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ABSTRACT
We study few-shot learning (FSL) under multi-agent scenarios, in
which participating agents only have local scarce labeled data and
need to collaborate to predict query data labels. Though each of the
agents, such as drones and robots, has minimal communication and
computation capability, we aim at designing coordination schemes
such that they can collectively perceive the environment accurately
and efficiently. We propose a novel metric-based multi-agent FSL
framework which has three main components: an efficient communi-
cation mechanism that propagates compact and fine-grained query
feature maps from query agents to support agents; an asymmetric
attention mechanism that computes region-level attention weights
between query and support feature maps; and a metric-learning
module which calculates the image-level relevance between query
and support data fast and accurately. Through analysis and exten-
sive numerical studies, we demonstrate that our approach can save
communication and computation costs and significantly improve per-
formance in both visual and acoustic perception tasks such as face
identification, semantic segmentation, and sound genre recognition.

CCS CONCEPTS
• Information systems→Multimedia and multimodal retrieval;
Music retrieval; • Computing methodologies→Multi-agent sys-
tems; Computer vision tasks; Image segmentation.
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Figure 1: Demo of few-shot multi-agent perception Tasks.

1 INTRODUCTION
Recent research has achieved great advances in single-agent visual
perception tasks such as image classification [17, 23], object detec-
tion [41, 42], semantic segmentation [4, 16, 34] and action recogni-
tion [40, 45, 53]. However, in many circumstances, multiple agents
are observing the environment from different perspectives simulta-
neously. Comparing to the single-agent case, multi-agent perception
(MAP) has the advantage of being able to share useful information
among the participating agents through inter-agent communications
and augment the observation of a same scene from different per-
spectives, as well as expanding the total scope with multiple scenes.
Hereby, one key research topic in multi-agent learning is to establish
an effective communication mechanism to share observations and
coordinate actions among participating agents.

Existing studies of multi-agent learning [7, 19, 21, 47] have
achieved good progress in improving the effectiveness of communi-
cations with deep-learning based approaches. The key idea is to learn
a shared deep neural network (DNN) for agents to encode scenes to
features, then aggregate features from all agents based on attention-
mechanism [18, 35, 55], and finally decode the fused feature for
downstream tasks such as perception or controlling. However, this
process is data-driven and requires plenty of training examples.

In reality, it can be very costly to label sufficient training data,
e.g., identify and label objects in the sensory data (e.g., point clouds)
collected with self-driving cars. Also, the scenes can be highly dy-
namic in which a single agent may encounter distinct objects just
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one or a few times. These observations motivate us to consider the
following question: “How to make multi-agent perception effective
in the data-scarce scenario?".

We formulate this question as a novel few-shot multi-agent per-
ception (FS-MAP) task and consider a general and practical setting:
each agent owns just a few labeled examples as support data, and it
also observes unlabeled query examples. We define FS-MAP as a
task for the agents to predict labels for query examples by learning
to collaborate and search for the most relevant support data through
inter-agent communications. To our best knowledge, we are the first
of considering this practically important yet under-explored research
topic, and we will provide a general framework of solving learning
tasks under the studied scenarios.

In multi-agent scenarios, the same object of interest may appear in
different regions with different sizes in images taken from different
perspectives, for example, images taken by multiple heterogeneous
agents such as UAVs (Unmanned Aerial Vehicles) and UGVs (Un-
manned Ground Vehicles) from different heights and distances with
various camera angles. Thus, it is critical to propose a robust distance
metric that can measure the similarity between query and support
data with certain translation and orientation invariance. To achieve
this, we design a novel multi-agent metric-learning framework to
tackle the FS-MAP tasks. We first extract the fine-grained 3-𝐷 visual
or audio feature maps which preserve the spatial information, then
we broadcast the query features to support agents to evaluate the rel-
evance between query and support data with a fine-grained distance
metric. Specifically, we propose to formulate the feature matching
as a Regularized Optimal Transportation (RegOT) [5] task and solve
it efficiently. The most relevant support data can thus assign their
labels to the corresponding query examples.

However, transmitting feature maps across agents would bring
in high communication costs and delays, especially when the cross-
agent bandwidth is limited. To tackle this issue, we design to extract
and transmit compact feature maps for query data and extract large
feature maps for local support data to compensate for information
loss. We can flexibly set the feature sizes to reach optimal perfor-
mance with constrained communication resources.

In this paper, we will demonstrate that our framework is not
only communication and computation efficient, but also significantly
outperforms existing methods.

In conclusion, our contributions include:

• We are the first to consider a critical but under-explored task of
how to effectively learn visual and acoustic perception tasks from
only a few training examples in multi-agent scenarios.
• We solve the challenge of collaborating distributed agents for

learning few-shot tasks by proposing a unified framework that
integrates multi-agent communication and metric learning.
• To reduce cross-agent communication costs, we propose to gener-

ate asymmetric query and support feature maps to balance percep-
tion accuracy and bandwidth usage.
• To robustly measure the relevance of structured query and sup-

port data, we propose a novel distance metric with invariance to
translation and viewpoints.
• Our approach significantly outperforms state-of-the-art methods

by 10%-15% on segmentation and classifications tasks upon multi-
media data including images and sounds.

2 RELATED WORK
Multi-agent learning has a broad scope of topics[7, 8, 19, 32, 49,
51]. Our work is closely related to the topics of learning com-
munication protocols [7, 14, 19, 21, 31, 38, 47, 51] to improve
the effectiveness of collaboration, as well as learning perception
tasks [10, 20, 31, 32, 58, 60]. VAIN [19] proposed to use kernel-
based attention to measure the weight of each agent’s message. Tar-
MAC [7] used signature-based attention [55] to decouple query and
key features to provide more flexibility of the communication such as
selecting which other agents to communicate with. When2Com [32]
further considered reducing bandwidth usage by using asymmet-
ric query and key sizes. Our communication design builds upon
the existing signature-based attention mechanism but further con-
siders improving the performance by communicating fine-grained
image feature maps. We choose asymmetric query and key sizes
and cross-validate the feature map resolution to strike the balance
of performance and communication cost. Also, our work adopts
the widely used centralized training and decentralized execution
paradigm [12, 47].

Few-shot learning (FSL) is a task of learning new skills with
very few labelled training samples. Our work is closely related to the
metric-based few-shot learning approaches [13, 15, 46, 52, 56, 59,
62] which focus on learning a good metric in feature space, such that
data samples of different classes can be distinguished. FSL has been
successfully applied in image classification [9, 24, 26, 36, 39, 50]
and semantic segmentation [25, 30, 57] tasks. MPNet [25] considers
a centralized few-shot segmentation approach which computes the
dot products between query and support image segments to provide
the attention of each spatial location. Instead of learning similarity
of image patches, we consider the data of a same class as a discrete
probability measure, and explicitly learn to represent data of same
labels to have close empirical measures which can be calculated by
the Wasserstein distance. By optimizing the representation of each
class, our approach better establishes the feature space to have tight
intra-class representations, which is critical in learning with few-shot
examples. In addition, our work focuses on building a general multi-
agent few-shot learning framework that is applicable for a broad
scope of multimedia recognition tasks, such as face identification,
semantic segmentation, audio recognition, etc.

Optimal Transport (OT) theory and Wasserstein distance define
a family of advanced distance metrics that have recently been used
to compare similarity between two structured data samples such as
images [2, 27–29, 37, 62–64]. However, the computation of OT is
complex and existing studies formulated it as linear programming
task [37, 43, 62] which has a high time complexity 𝑂 (𝑑3 log𝑑) with
𝑑 as the dimension of the feature. Our approach approximates the
distance with an entropic regularization term, which turns it into a
strictly convex problem that can be solved efficiently with a time
complexity of only 𝑂 (𝑑2 log𝑑).

3 FS-MAP TASKS AND DEFINITIONS
In a general FS-MAP setting, each agent can have a few labeled
support data instances as well as unlabeled query instances of arbi-
trary classes. We consider a simplified scenario in which each agent
owns a few labeled examples as support data for ONE category,
which is non-overlapping with each other. An agent is said to sup-
port a category if it holds support data of that category. We adopt
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this assumption of one support category per agent to facilitate the
discussion. Later, we will show that our approach can extend to the
general case that one agent can support multiple classes.

We formulate the few-shot multi-agent perception (FS-MAP)
task formally now. Following the conventions of few-shot learning
studies, we define FS-MAP as a𝐶-way 𝐾-shot 𝑁 -agent learning task.
Each agent 𝑖 could observe 𝐶𝑖 distinct categories and each category
has 𝐾 labeled samples. The total 𝐶 categories are covered by all
agents such that

∑
𝑖∈N 𝐶𝑖 = 𝐶. With the one support category per

agent assumption, we simply have 𝐶𝑖 = 1 and 𝐶 = 𝑁 . We show that
this definition of FS-MAP can generalize to various perception tasks,
among which we describe three typical multimedia perception tasks
considered in this paper.

• Image classification is to predict the label of the query data out of
𝐶 classes, e.g., the toy example in Fig. 1(a). Typically, we consider
the face identification task to match face images to the correct one
out of 𝐶 identities.
• Image segmentation is to predict each pixel’s class label out of
𝐶 classes in the query image, e.g., assigning the “car" label for
pixels in the highlighted area as shown in Fig. 1(b).
• Musical genre classification is to predict a soundtrack’s genre

out of 𝐶 total genre categories. Specifically, we convert sound
waves to spectrograms and consider the acoustic perception task
as a special image classification task.

As a real-world example, we consider the task of searching for
lost children in crowded scenes with police equipment such as drones
and patrol robots. The parents first provide one photo for their child
as the query instance. Then the police send out multiple drones,
robots, and humans to different zones to recognize human faces
and identify whether their observations could match the lost child’s
query photo. This distributed execution with multiple agents can
significantly improve the efficiency of face identification. Note that
we allow using as few as one query image (of the lost child) and
one support image (of each observed scene participant) to perform
the few-shot identity matching. We illustrate this in Fig. 1(a), with
cartoon images instead of human faces for privacy concerns.

4 OUR APPROACH
In this section, we introduce a unified framework to tackle our pro-
posed FS-MAP in detail. We first give an overview of our framework
and elaborate on the design details in the 1-shot learning paradigm.
Then we extend it to the general multi-shot learning paradigm and
multi-class support data setting.

4.1 Model overview
We show the overview of our framework in Fig.2. Our framework
has three main components: 1) a backbone Convolutional Neural
Network (CNN) 𝒇𝑏𝑜𝑛𝑒 as a feature extractor which encodes images
to hidden feature maps; 2) a query sub-network 𝒇𝑞𝑟𝑦 which encodes
hidden feature maps to compact query feature maps, and 3) a key sub-
network 𝒇𝑘𝑒𝑦 which encodes hidden feature maps to large-size key
feature maps. As we adopt the centralized training and decentralized
execution strategy [12, 47], these modules are shared across all
agents during query execution time.
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Figure 2: Overview of FSL-MAP architecture, including a
shared backbone network 𝒇𝑏𝑜𝑛𝑒 for generating 3 − 𝐷 feature
maps, a key network 𝒇𝑘𝑒𝑦 for generating key features, a query
network 𝒇𝑞𝑟𝑦 for generating query features, and a RegOT mod-
ule for measuring the distance between query and support data.

Support Image Query Image 1 Query Image 2 Query Image 3

Figure 3: School bus images of various camera viewpoints.

We adopt the names “query" and “key" features by following
TarMAC [7], and we call this design as signature-based communica-
tions. We also denote the unlabeled query images of a query agent 𝑢
as 𝑿𝑢 , and support images of each support agent 𝑣 as 𝑿𝑣 . With the
assumption of one support category per agent, each support agent
𝑣 also corresponds to 𝑣-th category. To simplify notations, we will
denote 𝑣 ∈ 𝑁 as abbreviation of 𝑣 = {1, ..., 𝑁 }.

4.2 Feature generation and broadcasting
To process a query or support image, we firstly extract their 3-D
hidden feature maps 𝒉𝑢 ,𝒉𝑣 ∈ R𝐷ℎ×𝐻ℎ×𝑊ℎ with backbone network
𝒇𝑏𝑜𝑛𝑒 respectively, such that 𝒉𝑢 = 𝒇𝑏𝑜𝑛𝑒 (𝑿𝑢 ) and 𝒉𝑣 = 𝒇𝑏𝑜𝑛𝑒 (𝑿𝑣),
in which 𝐷 is channel size and 𝐻 ×𝑊 is spatial resolution.

Then for the query data of agent 𝑢, we generate its query feature
𝒒𝑢 = 𝒇𝑞𝑟𝑦 (𝒉𝑢 ) with the query sub-network. For the support data of
agent 𝑣 , we generate its key feature 𝒌𝑣 = 𝒇𝑘𝑒𝑦 (𝒉𝑣) with the key sub-
network. We will use key feature and support feature interchangeably
to denote 𝒌𝑣 . The feature dimensions are 𝒒𝑢 ∈ R𝐷𝑞×𝐻×𝑊 and
𝒌𝑣 ∈ R𝐷𝑘×𝐻×𝑊 . We choose their spatial resolution 𝐻 ×𝑊 to be
the same (e.g., 8 × 8), while let their channel sizes 𝐷𝑞 and 𝐷𝑘 be
asymmetric such that 𝐷𝑞 ≪ 𝐷𝑘 , which in default are 32 and 1024.

In our design, the query features will be broadcasted from query
agents to all support agents so that a compact 𝒒𝑢 with a small channel
size 𝐷𝑞 will save bandwidth usage while preserving spatial resolu-
tion. Also, a large channel size 𝐷𝑘 for key features will compensate
for the accuracy loss caused by using small query features. For ex-
ample, the cost of transmitting feature maps of size 32× 8× 8 will be
equal to sending a 1-D feature vector of length 2048 floats, a.k.a, the
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bandwidth usage 8 KiloByte per frame (KBpf). We can flexibly set
the channel sizes in real applications for different channel capacities.
We will discuss the trade-off of channel size and resolution in the
ablation study.

Using coarse-grained 1-D image features to represent data as in
previous work [7, 19, 31] would bring inferior performance in FS-
MAP as real-world multi-agent data is inherently heterogeneous and
misaligned. For example, in Figure 3, the same yellow school bus
appears in different image regions with distinct sizes and positions
due to different camera viewpoints. In the next section, we design to
utilize the rich spatial information in the 3-D feature maps to perform
fine-grained feature matching between the query and support data.

4.3 Structured matching of two feature maps
In the previous step, the query agent 𝑢 has broadcasted its query
feature 𝒒𝑢 to the support agents as the receiving ends. In this section,
we explain how to measure the similarity between query feature 𝒒𝑢
and support feature 𝒌𝑣 , under multi-agent scenarios. We propose a
novel fine-grained metric-learning approach based on the Optimal
Transport (OT) [6] which considers the similarity between two struc-
tured data representations as the minimum cost of transporting all
units from one data distribution to the other.

We use region 𝑖 to denote the 𝑖-th spatial location in a feature map
of resolution𝐻 ×𝑊 , and use 𝒒𝑢,𝑖 ∈ R𝐷𝑞 to denote 𝑖-th feature vector
in feature maps 𝒒𝑢 . We call the 𝑖-th region in a query feature map
as source (src.) node 𝑖, and 𝑗-th region in support feature map as
destination (dst.) node 𝑗 . We propose a 3-step procedure to calculate
the minimum cost of moving the total units from all src. nodes in
query features to dst. nodes in support features.

Step 1: Region-wise similarity measure. In first step, we calcu-
late the similarity between every pair of src. and dst. nodes, indi-
cating the region-wise similarity between query and support data.
Specifically, for every region pair (𝑖, 𝑗), we compute the dot-product
of query feature 𝒒𝑢,𝑖 from src. node 𝑖, with the key feature 𝒌𝑣,𝑗
from dst. node 𝑗 . Since we use asymmetric query and key features,
they could be of different dimensionality (𝐷𝑞 ≠ 𝐷𝑘 ). We utilize the
general dot product [35] to calculate the cosine similarity

𝑎𝑢𝑣,𝑖 𝑗 =
𝒒𝑇
𝑢,𝑖
𝑾𝑔𝒌𝑣,𝑗

∥𝑾𝑇
𝑔 𝒒𝑢,𝑖 ∥∥𝒌𝑣,𝑗 ∥

, 𝑖, 𝑗 ∈ 𝐻𝑊 (1)

in which 𝑾𝑔 ∈ R𝐷𝑞×𝐷𝑘 is a learnable parameter for matching di-
mensionality of query and key vectors; 𝑖 ∈ 𝐻𝑊 is abbreviation of
𝑖 ∈ {1, ..., 𝐻𝑊 }. The cost of matching each region pair (𝑖, 𝑗) can be
conveniently defined as

𝑐𝑢𝑣,𝑖 𝑗 = 1 − 𝑎𝑢𝑣,𝑖 𝑗 . (2)

We use 𝑪𝑢𝑣 ∈ R𝐻𝑊 ×𝐻𝑊 to denote the costs between every pair
of src. and dst. nodes, i.e., the costs of moving one unit from each
region of query feature map to each region of support feature map.

Step 2: Node weight assignment. The next step is to determine
the total weight of each src. and dst. node, which stands for the im-
portance of a spatial region. The intuition is that a dst. node’s weight
is highly associated with its relevant src. nodes, e.g., a dst. node
with school bus representation should have high importance if one
or multiple src. nodes also have school buses. Thus, we determine
the reciprocal src. and dst. node weight 𝑠𝑢,𝑖 , 𝑑𝑣,𝑗 as the average of

total matching score such that

𝑠𝑢,𝑖 = max

(
𝒒𝑇𝑢,𝑖𝑊𝑔

∑𝐻𝑊
𝑗=1 𝒌𝑣,𝑗

𝐻𝑊
,𝜂

)
, 𝑠𝑢,𝑖 =

𝑠𝑢,𝑖∑𝐻𝑊
𝑖=1 𝑠𝑢,𝑖

𝑑𝑣,𝑗 = max ©­«
(∑𝐻𝑊

𝑖=1 𝒒𝑢,𝑖

𝐻𝑊

)𝑇
𝑊𝑔𝒌𝑣,𝑗 , 𝜂

ª®¬ , 𝑑𝑣,𝑗 =
𝑑𝑣,𝑗∑𝐻𝑊
𝑗=1 𝑑𝑣,𝑗

𝒔𝑢 = {𝑠𝑢,𝑖 , 𝑖 ∈ 𝐻𝑊 }, 𝒅𝑣 = {𝑑𝑣,𝑗 , 𝑗 ∈ 𝐻𝑊 }

(3)

in which 𝜂 is a small number (e.g., 1𝑒−3) to keep the weights positive.
The 𝒔𝑢 , 𝒅𝑣 denote the weights over the entire spatial regions for query
and support feature maps respectively.

Step 3: Distance of two feature maps. We now define the dis-
tance of two feature maps as the minimum cost of transporting the
src. node weights of query data to the dst. nodes. With the concept
of regularized optimal transportation distance regOT(·, ·), we define
the distance regOT(𝑢, 𝑣) between query data 𝑢 and support data 𝑣 as

regOT(𝑢, 𝑣) = min
𝑷 ∈U𝒔,𝒅

⟨𝑷 , 𝑪𝑢,𝑣⟩ −
1
𝜆
𝐻 (𝑷 )

U𝒔,𝒅 := {𝑷 ∈ R𝑛×𝑛+ : 𝑷1 = 𝒔𝑢 , 𝑷
⊺1 = 𝒅𝑣}

(4)

in which ⟨·, ·⟩ is element-wise product, 𝑷 ∈ R𝐻𝑊 ×𝐻𝑊 is the trans-
portation plan and𝐻 (𝑷 ) = −∑

𝑖, 𝑗 𝑝𝑖 𝑗 log 𝑝𝑖 𝑗 is its entropy. The terms
𝒔𝑢 and 𝒅𝑣 are the node weights defined in (3). The feasible setU𝒔𝑢 ,𝒅𝑣

contains all possible plans that move src. node weights to dst. nodes.
The objective is to search for an optimal plan 𝑷∗ which minimizes

the total cost given by ⟨𝑷 , 𝑪𝑢,𝑣⟩ as well as an entropy term that en-
courages the smoothness of the plan. Lemma 1 [5] in supplementary
material shows that the search for 𝑷∗ is a convex optimization prob-
lem with a global minimizer that can be decomposed to certain
diagonal forms. We show that there exists an efficient and bounded
iterative algorithm, called Sinkhorn-Knopp approach [22], to ap-
proximate the optimal transportation plan 𝑷 as in Algorithm 1. The
intuition is to alternatively refine two diagonal matrices 𝑿 , 𝒀 im-
plied by Lemma 1 to minimize the total transportation cost while
satisfying the constraints.

Algorithm 1: RegOT (𝑪 , 𝒔, 𝒅, 𝜆, 𝑛, 𝜀)
Output: Approximated optimal transport plan 𝑿 .
𝑨← exp(−𝜆𝑪), 𝑷 ← N(0, 1)
𝒖0 ← 0, 𝒗0 ← 0, 𝑷 (0) ← 𝑷/∥𝑷 ∥1
while | |𝑷 (𝒌)1 − 𝒔 | |1 + ||(𝑷 (𝒌) )𝑻 1 − 𝒅 | |1 > 𝜀 do

𝑘 ← 𝑘 + 1
𝒖 ← log( 𝒔

𝑷 (𝑘−1)1 ), 𝒖𝑘 ← 𝒖 + 𝒖𝑘−1

𝒗 ← log( 𝒅
𝑷 (𝑘−1)⊺1 ), 𝒗𝑘 ← 𝒗 + 𝒗𝑘−1

𝑷 (𝑘) ← diag(exp(𝒖𝑘 )) 𝑨 diag(exp(𝒗𝑘 ))
end
Return 𝑷 ← 𝑷 (𝑘) .

THEOREM 1. Algorithm 1 produces an approximated 𝑷 s.t.

⟨𝑷, 𝑪 ⟩ ≤ min
𝑷∈U𝒔,𝒅

⟨𝑷, 𝑪 ⟩ + 𝜖 , (5)

in 𝑂 (𝑛2 (log𝑛) (𝜖−3)) where 𝑛 = 𝐻𝑊 , the cost matrix 𝑪 is defined
by (2), and node weights 𝒔, 𝒅 are defined by (3).
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PROOF. The cost matrix 𝑪 given by (2) has ∥𝐶 ∥∞ ≤ 2, also both
𝒔, 𝒅 given by (3) sum to 1. By applying [1, Theorem 1], Algorithm 1
has a bounded time complexity of 𝑂 (𝑛2 (log𝑛) (𝜖−3)). □

In practice, we choose a reasonably large stopping criterion in Al-
gorithm 1 such as 𝜀 = 0.1 so that it computes the plan fast. Also, the
operations in Algorithm 1 are fully differentiable thus the gradients
can be back-propagated to update the network parameters.

We also compare our metric with recent studied Earth Mover’s
Distance [37, 62] that solves the original OT

𝑂𝑇 (𝑢, 𝑣) = min
𝑷∈U𝒔,𝒅

⟨𝑷 ,𝑪𝑢,𝑣 ⟩ (6)

without the entropy term as in our Problem 4. The original OT
task is a linear programming, which is usually solved by interior-
point methods with a time complexity of𝑂 (𝑛3 log𝑛) [37]; while our
approach shaves a factor of 𝑛 in time complexity. Furthermore, their
method costs an enormous 𝑂 (𝑛4) memory usage in order to make
it differentiable [3]. Our approach costs only 𝑂 (𝑛2) memory usage
and is fully differentiable.

In summary, we have introduced the procedures for estimating
the optimal transportation plan between two feature maps of image
or sound data. We will illustrate that the estimated plan can be
seamlessly integrated into multi-agent few-shot learning framework
to measure the relevance of a query example with the support data
owned by the participating agents.

4.4 1-shot multi-agent learning
In this section, we summarize the procedures of learning 1-shot
perception tasks with our framework, including classification and
segmentation. We will extend our approach to multi-shot learning in
section 4.5.

We denote 𝑍𝑢 as a query image from query agent 𝑢, and 𝑋𝑣 as the
1-shot support image of agent 𝑣 . We generate their query and sup-
port features 𝒒𝑢 and 𝒌𝑣 respectively, and estimate their regularized
optimal transportation plan 𝑷 = {𝑝𝑖 𝑗 , 𝑖, 𝑗 ∈ 𝐻𝑊 } with Algorithm 1.

1-shot classification task. For a classification task, we compute
the fine-grain structured similarity between query image 𝑍𝑢 and
support image 𝑋𝑣 as follows,

𝜓𝑢𝑣 = ⟨𝑷, 1 − 𝑪 ⟩ =
𝐻𝑊∑
𝑖=1

𝐻𝑊∑
𝑗=1

𝑝𝑖 𝑗 (1 − 𝑐𝑖 𝑗 ) . (7)

Thus we will have 𝑁 pairwise similarity scores between query image
𝑢 with every support agent 𝑣 ∈ N , which we denote as {𝜓𝑢𝑣, 𝑣 ∈ N}.
We interpret these values as 𝑁 -way probability scores, based on
which we compute the cross-entropy loss such that

ℓ𝑐𝑙𝑠 (𝑍𝑢 , 𝑦) = − log
exp(𝜓𝑢𝑦)∑𝑁
𝑣=1 exp(𝜓𝑢𝑣)

. (8)

Here 𝑦 is the ground truth label indicating the true category of
the query data. In the multi-agent setting, 𝑦 is equivalent to the
corresponding agent that has the support data point. The result of the
inference is to compute the predicted image label 𝑦 = arg max𝑣 𝜓𝑢𝑣 .

1-shot segmentation task. For segmentation task, we need to
produce a class label for each region of the query image, and expand
its resolution to original image size. The first step is to define the
averaged similarity of each region 𝑖 in query feature 𝒒𝑢 to all regions

(b) pole, vegetation, road

(a) truck, vegetation, pole
GT Pred

GT Pred

Figure 4: Sample images of FS-AirSim containing truck, vege-
tation, pole and road, with ground truth masks (mid) and pre-
dicted masks (right) with MAP-RegOT.

of a support image 𝑣 as

(𝝋𝑢𝑣)𝑖 =
𝐻𝑊∑
𝑗=1

𝑝𝑖 𝑗 (1 − 𝑐𝑖 𝑗 ), for 𝑖 ∈ 𝐻𝑊 . (9)

Thus (𝝋𝒖𝒗) ∈ R𝐻𝑊 implies the similarity scores of all regions
with label 𝑣 . Since the query agent will broadcast to all support
agents, we will have 𝝋𝑢 = {𝝋𝑢𝑖 , 𝑖 ∈ N} ∈ R𝑁×𝐻𝑊 which forms
the 𝑁 -way segmentation mask with resolution 𝐻 ×𝑊 . To expand it
to the original image’s size 𝐻0 ×𝑊0, we apply multiple transposed
convolution layers [61] followed by a simple bi-linear upsampling
upon 𝝋𝑢 such that 𝒐𝑢 = Upsample(𝝋𝑢 ) of size 𝒐𝑢 ∈ R𝑁×𝐻0×𝑊0 . We
can compute the pixel-wise cross-entropy loss to optimize the model
in end-to-end fashion, such that

ℓ𝑠𝑒𝑔 (𝑍𝑢 , 𝑌 ) = −
1

𝐻0𝑊0

𝐻0𝑊0∑
𝑖=0

log
exp( (𝒐𝑢𝑌𝑖 )𝑖 )∑𝑁
𝑣=1 exp( (𝒐𝑢𝑣)𝑖 )

, (10)

in which 𝑌𝑖 is the ground truth label of 𝑖-th pixel of the query image,
and (𝒐𝑢𝑌𝑖 )𝑖 is the corresponding region’s predicted score of the true
label. The result of the inference is to compute pixel-wise label
𝑌𝑖 = arg max𝑣 (𝒐𝑢𝑣)𝑖 , 𝑖 ∈ 𝐻0𝑊0.

We summarize the complete 1-shot multi-agent perception proce-
dures at execution time in Algorithm 2 in supplementary material.

4.5 K-shot multi-agent learning
We now extend our framework to 𝐾-shot multi-agent learning tasks,
where each support agent owns multiple support images for each
class. One naive way is to perform 1-shot learning 𝐾 times to mea-
sure the relevance of all support images per class and take the highest
score. However, this may lead to severe overfitting [46].

We adopt an early fusion strategy, which guides each support
agent to learn one synthetic support image 𝑋𝑣 for its class 𝑣 based
on all 𝐾 support images. We randomly initialize 𝑋𝑣 and iteratively
update it with min𝑋𝑣

ℓ (𝑋𝑣, 𝑣) for a fixed number of iterations (e.g.,
10) to query for its true label 𝑣 , with ℓ defined as (8) or (10). Specif-
ically, 𝑋𝑣 is sent from agent 𝑣 to all support agents as a “query"
image and gets updated as a normal 1-shot learning task. The pur-
pose is to search for an optimal representative image for each class
to distinguish its class from others best. During inference, we first
synthesize 𝑋𝑣 for each class locally on each agent, then we take it as
a single versatile support image to answer queries so that the 𝐾-shot
task converts to 1-shot.
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4.6 General multiple support classes per agent
In Sec. 3, we assumed one support category per agent to facilitate
discussion, i.e., each support agent 𝑣 corresponds to the 𝑣-th class.
We now generalize our framework to support multiple classes for
each support agent.

In this case, each agent 𝑣 supports a set of |𝐶𝑣 | classes with 𝐾
data samples per class. Support agent 𝑣 can generate support features
𝒌 𝑗
𝑣 , 𝑗 ∈ 𝐶𝑣 . Once it receives a query feature 𝒒𝑢 , agent 𝑣 will compute

the similarity score with each support feature 𝒌 𝑗
𝑣 individually and

return the list with tuples {(𝑠 𝑗 , 𝑗, 𝑣), 𝑗 ∈ 𝐶𝑣} of score, class index 𝑗 ,
and agent index 𝑣 back to the query agent 𝑢. The query agent 𝑢 can
determine the query data label by searching for the highest score in
the combined score lists from all support agents.

5 EXPERIMENT
We evaluate our FS-MAP framework on distinct perception tasks
and compare it with various state-of-the-art baselines to show its
effectiveness. We report the results on two benchmark datasets for
image segmentation and music genre classification tasks. We also
collect a human face dataset with heterogeneous devices to verify
face recognition task performance with distinct multi-agents. We
perform ablation studies on parameter choices.

5.1 Datasets
FS-AirSim. We build the FS-AirSim dataset upon AirSim-MAP [31]
which simulates flying multiple drones over a series of landmarks
in the AirSim “CityEnviron" environment [44]. Our FS-AirSim
contains 12K RGB frames of resolution 512 × 512 accompanied by
semantic segmentation masks over 10 classes. They were recorded
by 5-6 virtual drones from different perspectives in 118 scenes. We
split the classes to 5 for training/validation, and the rest 5 for testing
in a non-overlapping manner for few-shot learning purpose. Table 1
shows the class names in each split and the total number of frames
of each class. We will evaluate both classification and segmentation
tasks on this dataset.

FS-AirFace. We collect a few-shot face recognition dataset of 16
persons with UAVs and UGVs in four different scenes. As shown in
Figure 5, we use a video camera mounted on a DJI Mavic to capture
the videos from views in the air, and a camera on an automated
patrol vehicle to capture the videos from views on the ground. We
manually labeled 354 and 307 human faces from air and ground
perspectives, respectively, and resize them to a resolution of 84 × 84.
Table 2 shows the statistics of each split and the total number of
frames of each class. We will evaluate the face identification task
on this dataset. We also use the large-scale CelebA [33] face dataset
to pre-train our backbone models instead of directly training from
FS-AirFace from scratch.

GTZAN [54] is a widely used music genre dataset with sound-
tracks collected from diverse sources, including CDs, radio, micro-
phones, etc. This dataset contains 10 genres such as blues, classical,
pop, rock, and each genre has 100 16-bit Mono sound waves of 30
seconds. We split the genres into 8 for training/validation and the
rest 8 for testing. We convert the sound waves to the time-frequency
domain by FFT and extract the Mel spectrograms as the 2D acoustic
features for the few-shot genre recognition task. Concretely, we set
the FFT size 1024, the number of Mel scales 128 and split to multiple

Figure 5: Data collection with air-ground collaboration. We
build our FS-AirFace dataset upon the collected data.

Figure 6: Mel spectrograms of 2 samples of 4 genres.

split \ labels person sidewalk sky building car

train 91 4285 784 6180 5763
val 165 1558 568 2167 1928

split \ labels road pole bus truck vegetation

test 1510 398 109 329 1162

Table 1: Statistics of FS-AirSim dataset.

split Person Num UAV Frames UGV Frames Total

train/val 8 199 161 360
test 8 155 146 301

Table 2: Statistics of FS-AirFace dataset.

128-sample chunks in the temporal dimension. Thus, each sound-
track is represented by a series of 2D acoustic features of resolution
128 × 128. In each column of Fig. 6, we show the spectrograms of 2
sampled soundtracks for each of four genres in different columns.

5.2 Our approaches and baselines
We compare two approaches of our proposed FS-MAP framework.
MAP-RegOT integrates our signature-based communication mecha-
nism (4.2) and fine-grained metric-learning module RegOT(4.3) with
smoothed matching results. MAP-OT is a baseline of MAP-RegOT
which solves the original OT with LP solver as [62] with a much
higher computational cost and non-smoothed matching results.

We compare our approaches with baselines that utilize differ-
ent combinations of multi-agent communication mechanisms with
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FSL approaches to tackle the FS-MAP task. We choose the current
SOTA communication designs TarMAC [7] and When2Com [31],
and the current SOTA FSL approaches including MAML [11] and
MTL [48] as representatives for optimization-based learners. In
addition, we compare with state-of-the-art metric-based learners
including ProtoNet [46] and RelationNet [50] for classification, as
well as PANet [57] and MPNet [25] for segmentation. Note that
MPNet [25] can also extend to distributed scenarios with its original
attention design.

5.3 Implementation Details
For our approaches, we choose the ResNet-12 [17] as the backbone
network 𝒇𝑏𝑜𝑛𝑒 , for fair comparison with previous FSL studies as
MAML [11] and MTL [48]. The resolutions of input UAV images of
FS-MAP, Mel spectrograms of GTZAN dataset, and face images of
FS-AirFace dataset are 512× 512, 128× 128 and 84× 84 respectively,
and their extracted feature maps 𝒉 are of sizes 8 × 8, 8 × 8 and 6 × 6
respectively, with a same channel size 512. For query and key sub-
networks (𝒇𝑞𝑟𝑦 , 𝒇𝑘𝑒𝑦), we use two 3-layer CNNs to project 𝒉 to
channel sizes 𝐷𝑞 = 32 and 𝐷𝑘 = 1024 with same resolutions as 𝒉.
We set the dimensions of When2Com [31] feature vectors to be the
same with ours, and set the query size of TarMAC [7] to be same as
key size (𝐷𝑞 = 𝐷𝑘 = 1024) according to its model design. We have
released our code for boosting further research*.

5.4 Results of few-shot segmentation

Method 3-Way 1-Shot 3-Way 5-Shot

Acc IoU Acc IoU

When2Com+MAML [11, 31] 0.593 0.203 0.733 0.310
When2Com+MTL [31, 48] 0.652 0.259 0.735 0.321
TarMAC+MTL [7, 48] 0.660 0.310 0.752 0.328
TarMAC+PANet [7, 57] 0.661 0.292 0.762 0.335
MPNet [25] 0.705 0.287 0.770 0.346

MAP-OT (ours) 0.692 0.261 0.764 0.318
MAP-RegOT (ours) 0.727 0.334 0.783 0.366

Table 3: Segmentation results on FS-AirSim dataset.

In Table 3, we compare different methods with 3-way 1-shot and
5-shot semantic segmentation tasks on FS-AirSim. In our setting,
each support agent is aware of one exclusive semantic label so that 3
agents together are aware of 3 classes. For a query image, the areas
of interest are the unions of pixels of the 3 class labels. An example
of a pair of support image and mask is shown in Fig. 4. We train
all models to learn to predict correct labels for pixels of interest,
and evaluate the segmentation performance with two metrics: the
per-pixel accuracy (Acc) and the intersection-over-union (IoU) with
true masks. We can observe that

• MAP-RegOT outperforms all other approaches in both Acc and
IoU. It outperforms the MAP-OT by 5% and 2.6% in 1-shot and
5-shot tasks respectively, and even larger for other baselines.
• MAP-RegOT outperforms MPNet by 3% (0.727 v.s. 0.705) due

to the better metric provided by RegOT, while both significantly
outperform other baselines which do not consider fine-grained
feature matching.

*https://github.com/fanchenyou/fs-map-project.git

(a) Segmentation. (b) Classification.

Figure 7: PR curves for 1-shot tasks with MAP-RegOT.

• We show the precision-recall curve for each semantic class in
Fig.7 (a). The APs for classes of more pixels in images such as
sky, road are high, while APs for classes of pole, bus are relatively
low. Indeed, small and rare objects are harder to localize [41] and
thus decrease the overall IoUs.

         
Frame          True mask          Prediction

         
Frame          True mask          Prediction

Figure 8: More segmentation results of FS-AirSim. The left
group shows results on testing set, while the right group shows
results on validation set.

5.5 Results of few-shot classification
We perform 5-way 1-shot and 5-shot classification tasks on FS-
AirSim and FS-AirFace to evaluate image classification and face
identification performance. We show the results with two metrics: the
image classification accuracy (Acc) and the mean average precision
(mAP) over all classes. We observe in Table 4 on FS-AirSim that

• MAP-RegOT outperforms other approaches in both metrics. It out-
performs the second best MAP-OT by 7.7% (0.665 v.s. 0.617) and
2.5% (0.720 v.s. 0.702) for 1-shot and 5-shot tasks respectively.
• MAP-RegOT outperforms the SOTA combination of TarMAC

and RelationNet by 8.3% (0.665 v.s. 0.614) and 10.8% (0.720
v.s. 0.650) for 1-shot and 5-shot tasks respectively, indicating the
effectiveness of our fine-grained metric-learning approach.
• We show the PR curves in Fig.7 (b) and observe that the overall

APs of classification are significantly higher than segmentation.
This is because the label prediction is in image-level so that all
regions of the image can provide hints to deduce the true label,
which makes the task much easier.
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Method 5-Way 1-Shot 5-Way 5-Shot

Acc mAP Acc mAP

When2Com+MAML [11, 31] 0.458 0.413 0.482 0.443
When2Com+MTL [31, 48] 0.516 0.480 0.530 0.591
TarMAC+MTL [7, 48] 0.503 0.485 0.601 0.602
TarMAC+ProtoNet [7, 46] 0.531 0.424 0.684 0.607
TarMAC+RelationNet [7, 50] 0.614 0.623 0.650 0.657

MAP-OT (ours) 0.617 0.643 0.702 0.754
MAP-RegOT (ours) 0.665 0.697 0.720 0.793

Table 4: Classification results on FS-AirSim.

Method 5-Way 1-Shot 5-Way 5-Shot

Acc mAP Acc mAP

When2Com+MTL [31, 48] 0.283 0.301 0.309 0.322
TarMAC+MTL [7, 48] 0.310 0.312 0.315 0.345
TarMAC+ProtoNet [7, 46] 0.596 0.642 0.602 0.643
TarMAC+RelationNet [7, 50] 0.564 0.665 0.627 0.687

MAP-OT (ours) 0.636 0.690 0.670 0.737
MAP-RegOT (ours) 0.671 0.740 0.693 0.751

Table 5: Face recognition results on FS-AirFace.

Method 3-Way 1-Shot 3-Way 5-Shot

Acc mAP Acc mAP

When2Com+MTL [31, 48] 0.355 0.361 0.325 0.329
TarMAC+MTL [7, 48] 0.341 0.349 0.376 0.389
TarMAC+ProtoNet [7, 46] 0.498 0.512 0.541 0.558
TarMAC+RelationNet [7, 50] 0.503 0.521 0.566 0.624

MAP-OT (ours) 0.579 0.612 0.704 0.773
MAP-RegOT (ours) 0.581 0.615 0.722 0.786

Table 6: Music genre classification results on GTZAN.

Figure 9: Face images taken from air (first) and ground (mid
and right) viewpoints. Images are blurred for anonymity.

We consider the few-shot face identification tasks on the FS-
AirFace dataset in Table 5. We observe that MAP-RegOT consis-
tently outperforms MAP-OT (0.671 v.s. 0.636) and significantly
outperforms the best coarse-grained baselines by more than 12.6%
(0.671 v.s. 0.596) and 10.5% (0.693 v.s. 0.627) in 1-shot and 5-shot
tasks. Note that the query face images and support face images are
taken by UAVs and UGVs from different angles and perspectives, as
shown in Fig.9. As our approach better considers the difference in
query and support data’s perspectives, it outperforms the baseline
approaches naturally.

We find a similar trend for the few-shot music genre recognition
tasks on GTZAN dataset, as shown in Table 6. We observe that
MAP-RegOT consistently outperforms the baselines by more than
15% in both 1-shot and 5-shot tasks relatively. For two soundtracks
of the same genre, their Mel spectrograms could capture similar time-
frequency patterns but at different timestamps. A typical example
is shown in column 1 of Fig.6. Our approach can better align the
acoustic patterns such as crests and troughs in the frequency domain,
thus it outperforms in matching soundtracks of same genres.

5.6 Discussion and visualization

Query size 𝐷𝑞 Resolution 𝐻 ×𝑊 Accuracy Speed (fps)

8 16 × 16 0.969 160
32 8 × 8 0.976 176

128 4 × 4 0.974 172
512 2 × 2 0.965 179

Table 7: Ablation study of query feature resolutions.

Query vector size. In Table 7, we study the trade-off between
channel size 𝐷𝑞 and spatial resolution 𝐻 ×𝑊 of query feature maps.
Given a fixed channel bandwidth 8KBpf (4.2), i.e., 𝐷𝑞 × 𝐻 ×𝑊 =

2048, we report the 1-shot validation Acc and mAP, and inference
speed (fps) of MAP-RegOT. Except for 16×16, all combinations have
roughly similar inference speed and validation accuracy, showing
the stability of our model design in terms of parameter choice. We
found a resolution of 32 × 8 × 8 achieves the best balance of time
and accuracy. Meanwhile, our framework is flexible in choosing the
parameters to suit preferences of speed or accuracy.

Visualization. We show more few-shot segmentation samples in
Fig. 8. Overall, our approach can successfully identify the correct
pixel labels for moderate-size objects and smooth scenes. Objects
lying across multiple regions (e.g., school bus in the left column, last
row) could be inconsistently segmented though, as it is hard to learn
semantic information about the unseen testing classes with such
few labeled data. We want to raise the topic of refining inter-region
segmentation consistency to future work.

Enhanced Baselines. Previous works extracted feature vectors of
spatial resolution H=W=1, and chose either a large dim (e.g., 1024)
to guarantee performance (TarMAC [7]), or a small dim(e.g., 32)
to reduce comm. cost (When2Com [31]) by sacrificing the perfor-
mance. We find that even by increasing comm. costs, the baselines
cannot achieve comparable results with our methods. We evaluate
TarMAC with an increased feature dim from 1024 to 2048, 3072
and 4096, respectively, but get saturated accuracies of 0.564, 0.618,
0.647and 0.643, respectively, on face recognition task. Compared
with our MAP-RegOT (acc 0.671, Tab.5), the best performing Tar-
MAC (dim 3072, acc 0.647) has 3 times of the comm. cost, while
still underperforms our approach by 3.7%.

6 CONCLUSION
In this paper, we proposed a unified framework that tackles multi-
agent perception tasks in data-scarce scenarios. Our design of a
signature-based communication mechanism integrated with a fine-
grained metric-learning approach achieved significantly improved
FS-MAP results on various tasks, including face identification, se-
mantic segmentation, and sound genre recognition. Future work can
focus on improving the inter-region segmentation consistency for
few-shot segmentation tasks and explore more scenarios and forms
of multimedia data where FS-MAP can apply.
Acknowledgements: This work is supported by the Shenzhen Insti-
tute of Artificial Intelligence and Robotics for Society, and the Presi-
dential Fund from The Chinese University of Hong Kong, Shenzhen.
We also thank Zhilin Feng, Yanhuan Cai, Yifan Luo, Xiaochuan
Lin, Jisong Pan, Xiaoxue Liu, Shanshan Lu and Fanghao Wang for
helping data collection and demo making.



Few-Shot Multi-Agent Perception MM ’21, October 20–24, 2021, Virtual Event, China

REFERENCES
[1] J. Altschuler, J. Niles-Weed, and P. Rigollet. 2017. Near-linear time approximation

algorithms for optimal transport via Sinkhorn iteration. In NeurIPS. 1964–1974.
[2] M. Arjovsky, S. Chintala, and L. Bottou. 2017. Wasserstein generative adversarial

networks. In ICML.
[3] Shane Barratt. 2018. On the differentiability of the solution to convex optimization

problems. arXiv preprint arXiv:1804.05098 (2018).
[4] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. 2017.

Rethinking atrous convolution for semantic image segmentation. arXiv preprint
arXiv:1706.05587 (2017).

[5] Marco Cuturi. 2013. Sinkhorn distances: Lightspeed computation of optimal
transport. In NeurIPS. 2292–2300.

[6] Marco Cuturi. 2013. Sinkhorn distances: Lightspeed computation of optimal
transport. In NIPS.

[7] Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh, Mike
Rabbat, and Joelle Pineau. 2019. Tarmac: Targeted multi-agent communication.
In ICML.

[8] Yubin Duan, Ning Wang, and Jie Wu. 2021. Minimizing Training Time of Dis-
tributed Machine Learning by Reducing Data Communication. IEEE Transactions
on Network Science and Engineering (2021).

[9] Chenyou Fan and Jianwei Huang. 2021. Federated Few-Shot Learning with
Adversarial Learning. arXiv preprint arXiv:2104.00365 (2021).

[10] Chenyou Fan, Jangwon Lee, Mingze Xu, Krishna Kumar Singh, Yong Jae Lee,
David J Crandall, and Michael S Ryoo. 2017. Identifying first-person camera
wearers in third-person videos. In CVPR.

[11] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. ICML (2017).

[12] Jakob Foerster, Ioannis Alexandros Assael, Nando De Freitas, and Shimon White-
son. 2016. Learning to communicate with deep multi-agent reinforcement learning.
In NeurIPS.

[13] Spyros Gidaris and Nikos Komodakis. 2018. Dynamic Few-Shot Visual Learning
Without Forgetting. In CVPR.

[14] Xiyue Guo, Junjie Hu, Junfeng Chen, Fuqin Deng, and Tin Lun Lam. 2021.
Semantic Histogram Based Graph Matching for Real-Time Multi-Robot Global
Localization in Large Scale Environment. In IEEE Robotics and Automation
Letters.

[15] Jun He, Richang Hong, Xueliang Liu, Mingliang Xu, Zheng-Jun Zha, and Meng
Wang. 2020. Memory-Augmented Relation Network for Few-Shot Learning. In
ACM Multimedia.

[16] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2017. Mask
R-CNN. In ICCV.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In CVPR.

[18] Chiori Hori, Takaaki Hori, Teng-Yok Lee, Ziming Zhang, Bret Harsham, John R
Hershey, Tim K Marks, and Kazuhiko Sumi. 2017. Attention-based multimodal
fusion for video description. In ICCV.

[19] Yedid Hoshen. 2017. Vain: Attentional multi-agent predictive modeling. In
NeurIPS.

[20] Unnat Jain, Luca Weihs, Eric Kolve, Mohammad Rastegari, Svetlana Lazebnik,
Ali Farhadi, Alexander G Schwing, and Aniruddha Kembhavi. 2019. Two body
problem: Collaborative visual task completion. In CVPR.

[21] Jiechuan Jiang and Zongqing Lu. 2018. Learning attentional communication for
multi-agent cooperation. In NeurIPS.

[22] Philip A Knight. 2008. The Sinkhorn–Knopp algorithm: convergence and applica-
tions. SIAM J. Matrix Anal. Appl. (2008).

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. In NIPS.

[24] Aoxue Li, Weiran Huang, Xu Lan, Jiashi Feng, Zhenguo Li, and Liwei Wang.
2020. Boosting Few-Shot Learning With Adaptive Margin Loss. In CVPR.

[25] Peike Li, Yunchao Wei, and Yi Yang. 2020. Meta parsing networks: Towards
generalized few-shot scene parsing with adaptive metric learning. In ACM Multi-
media.

[26] Wenbin Li, Lei Wang, Jinglin Xu, Jing Huo, Yang Gao, and Jiebo Luo. 2019.
Revisiting local descriptor based image-to-class measure for few-shot learning. In
CVPR.

[27] Tianyi Lin, Chenyou Fan, Nhat Ho, Marco Cuturi, and Michael I. Jordan.
2020. Projection Robust Wasserstein Distance and Riemannian Optimization.
In NeurIPS.

[28] T. Lin, N. Ho, and M. Jordan. 2019. On efficient optimal transport: An analysis of
greedy and accelerated mirror descent algorithms. In ICML. 3982–3991.

[29] T. Lin, N. Ho, and M. I. Jordan. 2019. On the acceleration of the Sinkhorn and
Greenkhorn algorithms for optimal transport. ArXiv Preprint: 1906.01437 (2019).

[30] Lizhao Liu, Junyi Cao, Minqian Liu, Yong Guo, Qi Chen, and Mingkui Tan.
2020. Dynamic Extension Nets for Few-shot Semantic Segmentation. In ACM
Multimedia.

[31] Yen-Cheng Liu, Junjiao Tian, Nathaniel Glaser, and Zsolt Kira. 2020. When2com:
Multi-Agent Perception via Communication Graph Grouping. In CVPR.

[32] Yen-Cheng Liu, Junjiao Tian, Chih-Yao Ma, Nathan Glaser, Chia-Wen Kuo, and
Zsolt Kira. 2020. Who2com: Collaborative perception via learnable handshake
communication. (2020).

[33] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. Deep Learning
Face Attributes in the Wild. In ICCV.

[34] Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully convolutional
networks for semantic segmentation. In CVPR.

[35] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effective
approaches to attention-based neural machine translation. (2015).

[36] Boris Oreshkin, Pau Rodríguez López, and Alexandre Lacoste. 2018. Tadam: Task
dependent adaptive metric for improved few-shot learning. In NIPS.

[37] O. Pele and M. Werman. 2009. Fast and robust earth mover’s distances. In ICCV.
[38] Peng Peng, Ying Wen, Yaodong Yang, Quan Yuan, Zhenkun Tang, Haitao Long,

and Jun Wang. 2017. Multiagent bidirectionally-coordinated nets: Emergence
of human-level coordination in learning to play starcraft combat games. arXiv
preprint arXiv:1703.10069 (2017).

[39] Zhimao Peng, Zechao Li, Junge Zhang, Yan Li, Guo-Jun Qi, and Jinhui Tang.
2019. Few-Shot Image Recognition With Knowledge Transfer. In ICCV.

[40] A Piergiovanni, Chenyou Fan, and Michael Ryoo. 2017. Learning latent subevents
in activity videos using temporal attention filters. In AAAI.

[41] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You only
look once: Unified, real-time object detection. In CVPR.

[42] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks. In NIPS.

[43] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. 1998. A metric for distribu-
tions with applications to image databases. In ICCV.

[44] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. 2018. Airsim:
High-fidelity visual and physical simulation for autonomous vehicles. In Field
and service robotics.

[45] Karen Simonyan and Andrew Zisserman. 2014. Two-stream convolutional net-
works for action recognition in videos. In NIPS.

[46] Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for
few-shot learning. In NIPS.

[47] Sainbayar Sukhbaatar, Rob Fergus, et al. 2016. Learning multiagent communica-
tion with backpropagation. In NeurIPS.

[48] Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele. 2019. Meta-transfer
learning for few-shot learning. CVPR (2019).

[49] Wen Sun, Ning Xu, Lu Wang, Haibin Zhang, and Yan Zhang. 2020. Dynamic
Digital Twin and Federated Learning with Incentives for Air-Ground Networks.
IEEE Transactions on Network Science and Engineering (2020).

[50] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M
Hospedales. 2018. Learning to compare: Relation network for few-shot learning.
CVPR (2018).

[51] Ming Tan. 1993. Multi-agent reinforcement learning: Independent vs. cooperative
agents. In ICML.

[52] Hao Tang, Zechao Li, Zhimao Peng, and Jinhui Tang. 2020. BlockMix: Meta
Regularization and Self-Calibrated Inference for Metric-Based Meta-Learning. In
ACM Multimedia.

[53] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri.
2015. Learning Spatio-temporal Features with 3d Convolutional Networks. In
ICCV.

[54] G. Tzanetakis and P. Cook. 2002. Musical genre classification of audio signals".
IEEE Transactions on Speech and Audio Processing" (2002).

[55] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In NIPS.

[56] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. 2016.
Matching networks for one shot learning. In NIPS.

[57] Kaixin Wang, Jun Hao Liew, Yingtian Zou, Daquan Zhou, and Jiashi Feng. 2019.
Panet: Few-shot image semantic segmentation with prototype alignment. In ICCV.

[58] Tian Wang, Yan Liu, Xi Zheng, Hong-Ning Dai, Weijia Jia, and Mande Xie. 2021.
Edge-Based Communication Optimization for Distributed Federated Learning.
IEEE Transactions on Network Science and Engineering (2021).

[59] Zeyuan Wang, Yifan Zhao, Jia Li, and Yonghong Tian. 2020. Cooperative Bi-Path
Metric for Few-Shot Learning. In ACM Multimedia.

[60] Mingze Xu, Chenyou Fan, Yuchen Wang, Michael S Ryoo, and David J Crandall.
2018. Joint person segmentation and identification in synchronized first-and
third-person videos. In ECCV.

[61] Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus. 2010.
Deconvolutional networks. In CVPR.

[62] Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen. 2020. DeepEMD:
Few-Shot Image Classification With Differentiable Earth Mover’s Distance and
Structured Classifiers. In CVPR.

[63] Peng Zhao and Zhi-Hua Zhou. 2018. Label distribution learning by optimal
transport. In AAAI.

[64] Qi Zhao, Zhi Yang, and Hai Tao. 2008. Differential earth mover’s distance with
its applications to visual tracking. PAMI (2008).


	Abstract
	1 Introduction
	2 Related Work
	3 FS-MAP Tasks and Definitions
	4 Our Approach
	4.1 Model overview
	4.2 Feature generation and broadcasting
	4.3 Structured matching of two feature maps
	4.4 1-shot multi-agent learning
	4.5 K-shot multi-agent learning
	4.6 General multiple support classes per agent

	5 Experiment
	5.1 Datasets
	5.2 Our approaches and baselines
	5.3 Implementation Details
	5.4 Results of few-shot segmentation
	5.5 Results of few-shot classification
	5.6 Discussion and visualization

	6 Conclusion
	References

