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Abstract—We are interested in developing a unified machine
learning framework for effectively training machine learning
models from many small data sources such as mobile devices.
This is a commonly encountered situation in mobile computing
scenarios, where data is scarce and distributed while the tasks are
distinct. In this paper, we propose a federated few-shot learning
(FedFSL) framework to learn a few-shot classification model that
can classify unseen data classes with only a few labeled samples.
With the federated learning strategy, FedFSL can utilize many
data sources while keeping data privacy and communication
efficiency. To tackle the issue of obtaining misaligned decision
boundaries produced by client models, we propose to regularize
local updates by minimizing the divergence of client models. We
also formulate the training in an adversarial fashion and optimize
the client models to produce a discriminative feature space that
can better represent unseen data samples. We demonstrate the
intuitions and conduct experiments to show our approaches
outperform baselines by more than 10% in learning benchmark
vision tasks and 5% in language tasks.

Index Terms—federated learning, few-shot learning, adversar-
ial optimization

I. INTRODUCTION

Conventional distributed machine learning approaches [1],
[2] require the data to be transferred from clients to a central
server, which raises serious concerns of data privacy. A recent
proposed approach to address this issue is federated learning
(FedL) [3]–[5]. In the FedL paradigm, each participating client
computes a local machine learning model with its own data,
while a central server periodically coordinates client models
by model aggregation without collecting the actual data.

However, existing FedL approaches assume each participat-
ing client has sufficient training data for the tasks of interest.
For example, image classification, the common benchmark
task of FedL studies [3]–[5], assumes the availability of
thousands of labeled training samples for every class. In
reality, each mobile user may own just one or a few samples
of interested classes, and the user often does not have time
or interest to label each of them. The huge gap between
lab scenarios with abundant labeled data and real situations
with scarce and mostly unlabeled data severely limits the
practicality and scalability of FedL in real applications. It
motivates us to consider the following question: How to make
FedL effective in data-scarce scenarios?

A recently developed concept to address the issue of insuf-
ficient training data is few-shot learning (FSL) [6]–[8]. FSL
aims to develop machine learning models to solve unseen
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Fig. 1: Overview of a FedFSL system. Distributed client
devices train models with sampled FSL tasks, send the models
to the central server to aggregate for a central model, and
synchronize back for the next round of local updates.

tasks with very few examples, but often in the context of
a single data source. In this paper, we propose a federated
few-shot learning (FedFSL) framework for efficiently training
models with scarce data sources in federation. The developed
framework can tackle novel tasks that are never seen by any
of the data sources. As shown in Fig. 1, the paradigm of
FedFSL is to first perform local updates with few-shot tasks
sampled from local data, then perform model aggregation and
synchronization as in FedL which preserves the data privacy.

FedFSL has many potential applications for mobile com-
puting. For example, a few-shot language model can be used
to suggest words by learning from just a few typing records
from each of many users; a few-shot face recognition model
can identify users and their friends by learning from just few
annotated photos by each of many mobile users.

There are two technical challenges to develop an effec-
tive FedFSL framework: 1) directly using the existing FedL
approaches in the data-scarce scenarios may lead to mis-
aligned decision boundaries produced by client models, and
2) constraining the decision boundaries to be similar over
clients would develop a classifier overfit to training tasks
but not transferable to unseen tasks. To address these issues,
we first propose to regularize local updates by minimizing



the divergence between client models and the central model.
Then we design an adversarial learning procedure to construct
a discriminative feature space that can better generalize to
unseen tasks. We demonstrate the intuitions and conduct
experiments to show the effectiveness of our approaches.

Our contributions can be summarized as follows:

• We propose a novel learning framework that can perform ef-
fective federated learning on few-shot tasks. This represents
the first step in addressing the scenarios where training data
is scarce and testing tasks are distinct.

• We define a novel concept of mutual divergence of federated
client models, which can be minimized to better coordinate
the client training on scarce local data.

• We design a dedicated adversarial learning approach to
construct a discriminative feature space, which better gen-
eralizes to unseen tasks compared with existing training
procedures of FSL models.

• We evaluate our framework by modelling different types of
structured data (such as images and sentences) and show
its effectiveness and practical usability in various learning
tasks in machine vision and NLP.

• Our approaches significantly outperform baselines that are
either non-distributed or not aligning the feature space
across the clients by more than 10% on vision tasks and
5% on language tasks.

II. RELATED WORK

We will briefly review recent related work in two categories:
(i) studies either federated learning (FedL) (e.g., [3]–[5], [9]–
[17]) or few-shot learning (FSL) (e.g., [6], [8], [18]–[29]), or
both of them [30], [31] (ii) studies proposing similar ideas of
minimizing model divergence to better learn individual models
or an ensemble model.

To our best knowledge, training FSL models on distributed
devices is still an under-explored open problem. The first
work of this topic was from Chen et al. [30] who explored
federated meta-learning by applying FedAvg on meta-learning
approaches such as MAML [7] in a straightforward way.
However, their goal is to improve supervised learning by better
sharing models among federated clients, instead of learning
few-shot tasks. They neither evaluated their models on FSL
tasks, nor explicitly considered dealing with the underlying
data heterogeneity in different devices (e.g., non-IID case)
which can severely harm FSL. Our model captures the idea of
federating transferable knowledge among distributed clients.
We further explore the practical data-scarce scenarios and eval-
uate our models on challenging benchmark FSL datasets. In
addition, we explicitly resolve the data heterogeneity issue by
proposing a family of more effective meta-learning approaches
designed for federated settings.

The other work that loosely connects FSL with FedL is
Li et al. [32], which proposed a differentially private algorithm
for securing parameter transfer across devices or learning
stages. The authors considered FedL and FSL as two separated
applications of their technique, and their goal is to secure data
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Fig. 2: Three-step meta-learning of FSL.

privacy during model sharing instead of performing FSL with
federated devices.

There are two recent topics relating to training coordinated
client models with consistent feature space, though neither of
them considered few-shot learning. Personalized FedL [33]–
[35] aims to use FedL to learn different client models to
better fit local data. Existing work either fails to consider
few-shot scenarios [33], [34] or simply combines FSL and
FedL in naive way without considering optimizing the feature
space. The other related work of Zhang et al. [36] proposed
to minimize the divergence of every client model pair to
enhance ensemble learning. However, this imposes heavy
computation and communication costs in distributed scenarios.
On the contrary, we propose to approximate the pairwise client
divergence by the divergence between the client model and the
federated global model, which integrates into FedL seamlessly.

III. FEDERATED FEW-SHOT LEARNING

In this section, we will formulate a straightforward way
of perform few-shot learning with federated learning setting,
which we call FedFSL-naive. We will first review the general
federated learning (FedL) and the general centralized few-shot
learning (FSL) respectively, based on which we propose the
FedFSL-naive formally.

A. General Federated Learning Objective

In a common federated learning (FedL) system of K clients,
let nk be number of data samples of client k, n =

∑
k nk be

total samples across the devices, w be the learning model.
The local objective for client k is the average loss over all
data samples

Lk(w) =
1

nk

nk∑
i=1

f(xi, yi;w) , (1)

in which f is a loss function that evaluates the prediction of
model w on a data sample (xi, yi). The global target is a
weighted average of local objectives

min
w
L(w) =

K∑
k=1

pkLk(w), s.t. pk = nk/n . (2)

Existing FedL approaches often assume that the clients
always hold sufficient training data for a same task, i.e., the
local objective Lk(w) can be well optimized with enough
data samples. However, the realistic situation is each client
may own a few labeled data samples for certain categories
for training, and may encounter unlabeled data samples for
testing with unseen true categories. This leads us to study the
few-shot classification task which learns to classify on novel
classes with few training samples in the following sections.



B. General Centralized Few-Shot Learning

Next, we briefly review centralized few-shot learning (FSL)
procedures. FSL aims to learn a generic model which can
adapt to unseen tasks with only a few labeled training samples.
Following the convention, we define FSL task as an N -way
P -shot Q-query learning task, i.e., training a model with P
labeled data instances for each of N classes and then testing
on Q unlabeled query instances for each class. P is typically
very small such as 1 or 5 as “few-shot” implies.

Let us consider a toy example of classifying animal pictures
with mobile devices. The user captures and labels several
images for cat and dog, and wish to develop a machine
learning model to classify rare classes such as tigers and
wolves from just one captured image at the zoo. As the training
instances for tiger and wolf are extremely scarce, supervised
learning is infeasible.

We consider the recent state-of-the-art few-shot learning
strategy called meta-learning [7], [8], which aims to learn
transferable knowledge from few data samples and apply on
unseen data. The training objective is to minimize the training
loss over a batch of tasks T ∈ B as follows

min
w
L(w) =

1

|B|
∑
T ∈B

`T (w), (3)

in which ` is the task loss on training batch. This can be
tackled with an iterative approach in which each iteration can
be decomposed into three steps, as shown in Fig. 2.
• Sampling step: The first step is to sample a few-shot task
T , also called an episode, from base classes. For an N -way
P -shot Q-query few-shot task, an episode consists of P data
instances sampled from each of N distinct base classes as
a support set T (s), and Q data instances sampled from the
same N classes as a query set T (q).

• Adaptation step: The second step is to adapt the current
model to the sampled task with gradient descents. This
step uses the few labeled data in the support set T (s) and
performs one or several gradient steps towards optimizing
the model weights to the sampled task such that

w
′

= w − α∇wfT (s)(w), (4)

in which w′ is the adapted model, α is the step size.
• Optimization step: The final step is to evaluate w′ with

more samples in the query set T (q) with the empirical loss

`T (w) = fT (q)(w′) = fT (q)(w − α∇fT (s)(w)), (5)

During training, the query images T (q) are labeled to
provide training signals to update the model w as follows

w ← w − β ∇w`T (w), (6)

in which β is the learning rate. During inference, the labels
of the query images are unknown, and we estimate them
with the output of model w′.

The above procedures are summarized in Fig. 2.
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Fig. 3: Demo of a two-client case of FedFSL.

C. Federated Few-shot Learning (FedFSL)

As our purpose is to facilitate distributed devices to learn
models for few-shot tasks, we need study how to design
such a framework in which meta-learning procedures can be
integrated in the federated learning. We propose Federated
Few-shot Learning (FedFSL) in this section. The goal of
FedFSL is to search for a global optimal model w∗ learned on
distributed data sources that can best perform few-shot tasks.

Suppose we have K participating clients and each of them
can sample batches of few-shot tasks Tk ∈ Bk from their local
data sources as discussed in previous section. The local FSL
objective of k-th client extends from (3) as follows

Lk(w) =
1

|Bk|
∑
Tk∈Bk

`Tk(w), (7)

in which the subscript k of Tk emphasizes that it’s sampled
from local data source of client k. We search for a federated
global model w∗ which minimizes the weighted average of
local FSL objectives as follows

w∗ = min
w
L(w) =

K∑
k=1

pkLk(w) =

K∑
k=1

|Bk|
|B|
Lk(w) (8)

Motivated by FedAvg [3], we propose a straightforward
way of solving a surrogate objective of (8) to approximate
the global solution, which we call FedFSL-naive. Similar
approaches have also been mentioned in [30], [34]. As shown
in Fig. 3, FedFSL-naive iteratively updates the central model
w by (i) first optimizing each local objective of (7) in parallel,
and (ii) aggregating local models to the central model, which
update the global model and send it back to clients for the
next round of optimization. Formally,
• At the t-th optimization round, each client k optimizes the

following local objective

w∗,tk = argmin
w

Lk(w) = argmin
w

1

|Bk|
∑
Tk∈Bk

`Tk(w) , (9)

in which the FSL loss `(w) is given by (5). Fig. 3 shows
a two-client example, in which each client updates on three
sampled tasks with (9) and obtains local optimal models



w∗,t1 and w∗,t2 . The clients then send these local parameters
to the central server.

• Then the central server approximates the optimal global
solution by averaging the client models such that

wt+1 =

C∑
k=1

|Bk|
|B| w

∗,t
k , (10)

and send to all clients for next round of optimization.
Steps (9)-(10) are repeated for multiple rounds until conver-
gence. We show the convergence of FedFSL-naive as follows.

Proposition 1. If loss function fT (w) in (4) satisfies the
strongly-convex conditions as in Corollary 1, Finn et al. [23]
1 , FedFSL-naive converges at a rate of O( 1

T ) in which T is
the total number of gradient updates during training.

Proof. As fT (w) is strongly-convex, Corollary 1, [23] implies
that the local FSL objective Lk in (7) is also strongly-convex.
FedFSL-naive can be taken as a FedAvg algorithm with a
strongly-convex objective, thus Theorem 3, [37] implies that
it converges at a rate of O( 1

T ) in which T is total number of
local gradient updates of all devices during training.

Remark 1. By (Theorem 4.5 [34]), non-convex models f(w)
satisfy bounded gradient ||∇fi|| ≤ B, twice continuously dif-
ferentiable, L-Lipschitz with ρi-Lipschitz Hessians of bounded
variance, converge to some stationary points.

IV. IMPROVING FEDFSL WITH BETTER COORDINATION

So far, we have provided a straightforward way of perform-
ing federated few-shot learning. However, as meta-learning
depends on sampled episodes that contain only very few
labeled data points, different data distributions over the clients
as well as the high variance of the data may lead to quite
distinct gradient descent directions, and thus the trained few-
shot models could become quite distinct over the clients. This
results in model divergence in aggregation. Similar observa-
tions were also found in FedL tasks with non-IID data [4],
[9] but this problem could be amplified in the data-scarce
scenarios we consider.

In Fig. 4(a), we illustrate a two-client case to show that the
discrepancy between two client models makes them provide
misaligned individual decision boundaries (left). The aggre-
gated central model thus provides less optimal federated deci-
sion boundary (right) with lots of misclassified data samples.

In this section, we will discuss how to better coordinate
client models with mutual information in IV-A, and we
propose an adversarial learning procedures to further learn a
discriminative feature space in IV-B.

A. FedFSL with Mutual Information (MI)

To better coordinate client models learned on distinct data
sources, we propose the concept of mutual information (MI) as
regularization term to measure and minimize the discrepancy
of all the participating client models.

1f is G-Lipschitz, β-smooth, ρ-Lipschitz Hessians and µ-strongly convex
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Fig. 4: Illustration of decision boundaries learned by (a)
FedFSL-naive and (b) FedFSL-MI in two-client case.

Formally, we define the MI loss as the Kullback-Leibler
(KL) divergence of probability outputs produced by the feder-
ated global model wt and the client model wk over sampled
tasks at each round t such that

LMI
k (wt, wk) =

1

|Bk|
∑
Tk

DKL

(
p(wt) || p(wk)

)
=

1

|Bk|
∑
Tk

(
p(wt) · log

p(wt)

p(wk)

)
,

(11)

in which p(·) is the probability outputs of an FSL model.
Given an N -way FSL task Tk, p(w) is the normalized N -
way predictions over N classes that sums to one. We aim to
minimize MI in order to reduce the discrepancy, and define
the objective of Fed-MI as follows

min
wk

LFed-MI(wk) = L(wk) + γLMI(wt, wk) , (12)

in which the weight γ > 0 can be searched by cross-validation.
To stabilize the stochastic optimization process, we clip the

probability ratios between global and local predictions p(wt)
p(wk) in

(11) to be within interval (1−ε, 1+ε), and 0 < ε < 1. Similar
practices are also used to stabilize generative adversarial
learning [38] and reinforcement learning [39].

We call this new method FedFSL-MI (FedFSL with Mu-
tual Information regularization), and illustrate the intuition
in Figure 4(b). We encourage the decision boundaries to be
consistent across the local clients so that the federated model
can produce a better aligned decision boundary. We now prove
the convergence of FedFSL-MI as follows.

Lemma 1. If non-convex loss function fT (w) satisfies con-
ditions as in Theorem 4.5 [37]: f(w) has bounded gradient
||∇fi|| ≤ B, twice continuously differentiable and L-Lipschitz
with ρi-Lipschitz Hessians of bounded variance, learning
rate β and with term T defined in Theorem 4.5 [37], and
we further assume the probability output function is also



bounded ||∇p(wk)|| ≤ Bp, then the corresponding FedFSL-
MI objective (11) satifies the first-order stationary condition

1

τK

K−1∑
k=0

τ−1∑
t=0

E[||∇L(w̄k+1,t) + γLMI(w̄k+1,t)||2]

≤4(L(w0)− L∗)
βτK

+O(1)(T + γ2B2
p(1 + ε)2) ,

(13)

where w̄k+1,t is the average of each local update t ≤ τ .

Proof. We consider the MI objective as follows

E[||∇L(wk) + γLMI(wt, wk)||2]

≤ 2E[||∇L(wk)||2] + 2γ2E[||∇LMI(wt, wk)||2] .

We can directly utilize Theorem 4.5 [37] to give an upper
bound for the first term. Then the second term satisfies

γ2E[||∇LMI(wt, wk)||2]

= γ2E

[∥∥∥∥ p(wt)p(wk)
∇p(wk)

∥∥∥∥2
]
≤ γ2B2

p(1 + ε)2 ,

since we clip the ratio p(wt)
p(w) to interval (1 − ε, 1 + ε). We

combine the upper bounds of first and second term, and we
properly scale the learning rate, to complete the proof.

Remark 2. Based on Lemma 1, and Corollary 4.6 [37], and
by letting σ2

G denote bounded stochastic gradient, we can
properly set the batch size D, step size α of local updates,
and communication rounds τ to find an O(ε +

α2σ2
G

D )-first-
order stationary point.

B. Improving feature space with adversarial learning

One technical disadvantage of FedFSL-MI is that constrain-
ing the decision boundaries to be similar over clients would
develop a complex classifier that overfits to training tasks,
while makes the complex decision boundary not useful to
unseen tasks. This also presents a key difference between FSL
and conventional supervised learning.

1) Feature space: We aim to search for a representative
feature space as transferable knowledge that can be used to
learn unseen data samples. In an ideal feature space, samples
of the same labels are close to each other, while samples of
different labels are far away. For example, images of cats and
tigers are close in feature space, while tigers and wolves could
be far away due to their distinct visual features.

2) Learn a consistent feature space: We will show that
such a feature space can be derived properly and efficiently in
distributed scenarios without sharing local data. Motivated by
recent progress in Generative Adversarial Networks [40], [41],
we will decompose an FSL model as a feature generator and
a classifier (i.e., discriminator) which can be optimized in an
alternative and iterative fashion. This new adversarial learning
approach is named as FedFSL-MI-Adv (FedFSL with Mutual
Information regularization and Adversarial learning).

We first introduce the notations to facilitate discussion.
Without loss of generality, a few-shot learning model can be
represented as a feature generator Θ and a classifier θ. For
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Fig. 5: An example of federated decision boundaries learned
by FedFSL-MI-adv with two-stage adversarial learning on two
clients of different data distributions.

a given data sample x, we denote its generated feature as
fΘ(x). The output logits of the classification model is derived
by applying the classifier on the feature such that fθ ◦ fΘ(x).
Thus the probabilistic distribution over N classes is denoted
as p(Θ, θ) = σ(fθ◦fΘ(x)) in which σ is the softmax function.

3) Adversarial learning procedure: We design a two-stage
adversarial learning procedure for the local update for ex-
plicitly learning a consistent feature space. The core idea is
to alternatively train the classifier and the generator as two
opponents: train the local classifiers to maximize the difference
between their predictions and central model predictions, while
train the client feature generators to minimize the difference.

In overall, the (t-1)-th communication round ends up by
aggregating the client models to a central model in (10) and
sending it back to clients as wk = [Θk, θk]. In addition, we
utilize a second classifier θ′k for the learning process.
• Training stage-1 is to train θk and θ′k to produce distinct

decision boundaries, in the motivation of detecting am-
biguous data samples in current feature space. Ambiguous
samples are lying near the decision boundaries which tend
to be misclassified by two different classifiers, as shown in
Fig. 5(stage-1). We define the adversarial loss to measure the
difference of two classifiers θk and θ′k by the KL divergence
of their probabilistic outputs p(Θ, θ) such that

Ladvk (θk, θ
′
k; Θk) =

1

|Bk|
∑
Tk

DKL (p(Θk, θk) || p(Θk, θ
′
k)) .

(14)
We simultaneously minimize the FSL-MI local objective
while maximize the adversarial loss to encourage the dis-
agreement of the two classifiers. Formally, the learning
objective of stage-1 is a combination of task objective Lk
(12) and adversarial loss Ladvk with weight η > 0 such that

min
θk,θ′k

Lst-1k (θk, θ
′
k; Θk)

= Lk(θk; Θk) + Lk(θ′k; Θk)− ηLadvk (θk, θ
′
k; Θk).

(15)

• Training stage-2 is to optimize the generator Θk to mini-
mize the discrepancy of the two classifiers θk and θ′k. The



intuition is shown in Fig. 5(stage-2): by minimizing (14),
the feature generator Θ is learning to push ambiguous data
samples away from the decision boundaries, so that both
classifiers could make the right predictions and their dis-
crepancy gets reduced. As a result, the feature space (dashed
circles) generated by Θ is trained to be discriminative which
produces larger inter-class margins. Formally, we define the
objective of stage-2 as a combination of local task objective
Lk and adversarial loss Ladvk with weight λ > 0 such that

min
Θk

Lst-2k (Θk; θk, θ
′
k)

= Lk(Θk; θk) + Lk(Θk; θ′k) + λLadvk (Θk; θk, θ
′
k).

(16)

By training the classifiers and the feature generator in an
adversarial manner, we iteratively optimize the model to learn
a discriminative feature generator which helps boost few-shot
learning on unseen tasks. We summarize in Algorithm 1.

Algorithm 1: FedFSL-MI-Adv algorithm.
Input: A set of K federated clients. A local FSL objective

Lk for each client k.
Output: A global model w = [Θ, θ] optimized for FSL task.
Server executes:

Initialize global model w0 = [Θ0, θ0]
t← 1
while t ≤ maximum rounds T do

for each client k in parallel do
[Θt

k, θ
t
k]← ClientUpdate([Θt, θt])

end
Clients send models [Θt

1...K , θ
t
1...K ] to server

[Θt+1, θt+1]←
∑K

k=1
|Bk|
|B| [Θt

k, θ
t
k]

The server sends [Θt+1, θt+1] back to clients
t← t+ 1

end
Return [Θt, θt]

ClientUpdate([Θ, θ]):
Input: global model from previous round [Θt, θt]
Output: updated local model [Θt

k, θ
t
k]

Sample a batch of episodes Bk = {T1, ..., Tn}
[Θk, θk]← [Θt, θt], Initialize θ′k
θk, θ

′
k,Θk ← Solve Eq.(15)-(16) alternatively

Return [Θk, θk]

V. EXPERIMENTS AND DISCUSSIONS

We first provide details of the model architecture, parameter
settings, and datasets that we use in the experiments. Then
we visualize the decision boundaries of our approaches with
a toy example. We then demonstrate the performance of our
proposed algorithms with two typical few-shot classification
tasks – 5-way 1-shot and 5-way 5-shot – on three benchmark
datasets which cover machine vision and NLP tasks. We will
make in-depth discussions.

A. Model and datasets

We utilize a deep neural network (DNN) as our base
model (adopted from ResNet-12 [42] which is commonly used
for image classification tasks [20], [43], [44]). We set the
adaptation step size α = 0.01 in (4), the mutual information

FedFSL-MIFedFSL-MI-Adv

Fig. 6: Visualization of decision boundaries of FedFSL-KD
and FedFSL-KD-Adv at different epochs.

weight γ = 0.2, and the stage-1/-2 discrepancy loss weight
η = λ = 0.1 in (15) and (16).

We take three common benchmark datasets in evaluating
both FSL and FedL in previous work [7], [8], [19], [30].

miniImageNet [6] is based on a small portion of the full
ImageNet images [45]. It has 100 classes of images split
to 64/16/20 as train/val/test sets. Each class has 600 images
with a resolution of 84 × 84. Sent140 [46] is a benchmark
federated learning dataset for 2-way sentiment classification
(positive and negative). We sampled from this dataset 10,000
annotated tweets provided by 310 twitter users and split them
to train/val/test sets with provided tools. Each tweet has 1-
20 English words. We tokenize the sentences and keep only
common words which have GloVe representations [47].

B. MNIST Example

We provide a simple example on MNIST digit dataset in
Fig. (6), to visualize and compare the decision boundaries of
FedFSL-MI and FedFSL-MI-Adv. We consider the 5-way 1-
shot FSL task here: train a digit classification model on data
of digits 0-4, and test its few-shot classification capability on
digits 5-9 by observing just one labeled sample per class. To
better visualize the results, we manipulate the feature generator
to produce a 2-dim feature for each input digit sample.

In Fig. 6, we plot the testing data samples from digit
class 5-9 by projecting their features produced by the feature
generators. We also depict the decision boundaries of the
classifiers. Data samples of different classes are with different
colors. We observe that FedFSL-MI-Adv (left) produces more
distinguishable decision boundaries than FedFSL-MI (right) as
expected. The two algorithms achieve a few-shot classification
accuracy of 87.5% and 83.6%, respectively. The least accurate
class recognized by FedFSL-MI-Adv is digit ’9’ (purple) of
73% correctness rate, with 18% misclassified as ’6’ (orange);
while for FedFSL-MI is digit ’6’ (orange) of 64% correctness
rate, with 23% misclassified as ’8’ (red). This indicates that
our adversarial learning approach proposed in Section IV-B
boosts the FedFSL task by constructing a more discriminative
and transferable feature space for FSL.

C. Results on benchmark datasets

We experiment with our proposed three methods (FedFSL-
naive, -MI, -MI-Adv) and two additional baselines (FSL-local
and FedFSL-prox) for comparison.



• FSL-local is a non-distributed baseline of training an indi-
vidual FSL model for each client on local data and averaging
their results on the shared testing tasks.

• FedFSL-prox is a variant of FedFSL-naive by adding a
weight regularization term as FedProx [9] in objective.

We partition the data samples in IID and non-IID ways.
For IID partition, data samples of each class are uniformly
distributed to each client. To perform non-IID partition, we
follow [33], [48] by dividing data samples to all clients class-
by-class with Dirichlet distribution of concentration parameter
α = 1.0. In Fig.7, we show an example of such a partition
of 64 training classes of miniImageNet on a randomly chosen
client, when total device number is 2 to 30.

Fig. 7: Non-IID data.

Method Non-IID

1-shot 5-shot

FedFSL-local 59.70% 66.68%
FedFSL-naive 68.85% 70.62%
FedFSL-prox 70.77% 72.25%
FedFSL-MI 70.37% 73.25%
FedFSL-MI-Adv 71.35% 76.00%

TABLE I: Sent140 results.

Method IID Non-IID

1-shot 5-shot 1-shot 5-shot

FSL-local 50.83% 67.47% 48.08% 63.25%
FedFSL-naive [30] 53.00% 67.63% 49.95% 66.11%
FedFSL-prox [9] 53.03% 69.05% 50.08% 68.53%

FedFSL-MI (ours) 54.98% 69.07% 51.07% 68.57%
FedFSL-MI-Adv (ours) 56.42% 70.92% 53.69% 69.61%

TABLE II: Results on benchmark datasets.

1) Results on Image Classification: In Table II, we compare
our methods on miniImageNet with 1-/5-shot tasks learned by
a federation of 10 clients. We observe
• FedFSL-MI-Adv outperforms others. For both IID and non-

IID case, FedFSL-MI-Adv consistently outperforms others
on both 1-shot and 5-shot tasks for both datasets.

• For 1-shot and 5-shot IID task on miniImageNet, FedFSL-
MI-Adv achieves the best accuracy of 56.42% and 70.92%,
which outperforms the second best FedFSL-MI by more
than 2.6% and 2.7% respectively and relatively.

• For non-IID task, FedFSL-MI-Adv outperforms the second
best FedFSL-MI by more than 5% in 1-shot case on
miniImageNet, and outperforms FedFSL-naive by more than
7.2%. This indicates that our designed modules indeed help
achieve a better federated model especially for non-IID case.

• Using FedProx [9] performs no better than our FedFSL-MI.
This is because FedProx directly constrains client model
weights to be closer to global model, while our FedFSL-
MI softly optimizes the model outputs of them to be closer,
which makes the training end-to-end and easier to optimize.
2) Results on Text Classification: In Table I, we compare

our methods on Sent140 dataset with 1-shot / 5-shot tasks
learned by a federation of 5 clients. Following the provided

Fig. 8: FSL accuracy of 1-shot task on MiniImageNet w.r.t.
number of devices in federation.

tool of partitioning the dataset, we distribute different users’
data to each client without replacement. Since the data dis-
tributions vary for users, this sampling process provides non-
IID data partitions. Our goal is to train an effective global
sentiment classification model on one portion of users, which
can be used to detect the sentiment on disjoint new users. This
is particularly challenging because different users can use very
distinct words and exclamations to express feelings.

In this task, our backbone model is a GRU (RNN) network
with hidden size 128. We convert tweet sentences to sequences
words as input to the model, and use a binary classifier to
distinguish negative or positive sentiment. We examine the
performance of baselines and our models and observe that

• FedFSL-MI-Adv outperforms the other approaches in this
natural language understanding task, similar as in image
classification task. It also shows that our FedFSL framework
can be applicable to both CNN and RNN models.

• We found that the performance increases from 1-shot to
5-shot tasks are generally less than image classification
tasks, e.g., less than 5% on Sent140 while more than 10%
on miniImageNet. This is because the few-shot labelled
sentences can only provide a few more words to help adapt
to a user’s emotion, while images can provide much richer
details and patterns of a given object.

3) Different device number: We study the trend of accuracy
of FedFSL with different number of participating devices
K = 2, 5, 10, 20, 30, as well as K = 1 to simulate complete
centralized training. We illustrate the results for non-IID 5-
way 1-shot task with miniImageNet in Fig. 8 with detailed
numbers. Note that the more participating devices, the fewer
training samples each device holds. We observe that

• The overall trend is that more participating devices yielded
decreased accuracy for all 3 approaches. The task becomes
more difficult when K increases as the device coordination
grows harder and the client model becomes less capable
with less training data.

• FedFSL-MI-Adv achieves the best results on all cases, lead-
ing the second best FedFSL-MI by more 2-5% relatively.

• The performance of FedFSL-MI-Adv decreases more slowly
than other approaches with the increase of K, which indi-
cates the beneficial of learning a consistent feature space.

• FedFSL-MI-Adv in 2-device federation works even better



than 1-device centralized training, with accuracy 54.96%
v.s. 54.41%. Note that the total training samples of each
device get halved on each device when K = 2. The surpris-
ing result that distributed training outperforms centralized
training can be explained that FSL is aiming to learn with
very few training samples, instead of fitting a task with many
samples as in supervised learning. Therefore, FSL is relative
less sensitive to the number of examples in base classes
on each client. Moreover, by utilizing our approach to
align decision boundaries well, the two client models form
an effective ensemble to enhance the overall performance,
compared with a single-model case.

VI. CONCLUSION

In this paper, we proposed a framework that makes federated
learning effective in data-scarce scenarios. We designed an
adversarial learning strategy to construct a consistent feature
space over the clients, to better learn from scarce data. Experi-
mental results show that our adversarial learning based method
outperforms baseline methods by 5%∼15% on benchmark
datasets. Future work can investigate how to further extend
FedFSL to regression and reinforcement learning scenarios.
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