
Survey of Convolutional Neural Network

Chenyou Fan
Indiana University
Bloomington, IN
fan6@indiana.edu

Abstract

Convolutional Neural Network (CNN) was firstly intro-
duced in Computer Vision for image recognition by Le-
Cun et al. in 1989. Since then, it has been widely used
in image recognition and classification tasks. The recent
impressive success of Krizhevsky et al. in ILSVRC 2012
competition demonstrates the significant advance of mod-
ern deep CNN on image classification task. Inspired by his
work, many recent research works have been concentrat-
ing on understanding CNN and extending its application to
more conventional computer vision tasks. Their successes
and lessons have promoted the development of both CNN
and vision science. This article makes a survey of recent
progress in CNN since 2012. We will introduce the gen-
eral architecture of a modern CNN and make insights into
several typical CNN incarnations which have been studied
extensively. We will also review the efforts to understand
CNNs and review important applications of CNNs in com-
puter vision tasks.

1. Introduction
In spite of all the fancy names like “data-driven method”

or “deep learning method”, as well as the disputes like
whether convolutional neural network is panacea or poison
of machine learning researchers, we have to know convo-
lutional neural network is essentially a type of neural net-
work. The concept of neural network has already existed
since 1950s when Frank Rosenblatt created the perceptron.
Even convolutional neural network itself is not a new con-
cept at all. The convolutional neural network was firstly
introduced in [33] to recognize handwritten ZIP code in
1989, and later extended to recognition and classification of
various objects such as hand-written digits (MNIST) [34],
house numbers [49], traffic signs [51], Caltech-101 [19] and
more recently 1000-category ImageNet dataset [32].

CNNs saw extensive use in the 90s of 20th century, but
fell out of fashion with the emergence of SVM and Bayesian
models. One important reason is, small datasets in 1990s

and early 2000s such has MNIST (∼70000 instances) and
Caltech-101 (∼10000 instances), were incapable of training
a modern convolutional neural network with deep layers of
hundreds of millions of parameters. In comparison, SVMs
and Bayesian models have relative fewer parameters which
can be well optimized with smaller contemporary datasets.
Therefore, in a long time, convolutional neural networks
had not been found to surpass other machine learning meth-
ods. However, with the advent of much larger datasets in
the first decade of 21st century, training very deep convo-
lutional neural networks has become feasible. The break-
through was finally made in 2012. Krizhevsky et al. [32]
achieved substantially higher image classification accuracy
with convolutional neural network on ImageNet dataset in
the ILSVRC 2012 competition. Their deep convolutional
neural network was trained on ImageNet dataset with 1.2
million labeled images with data augmentation, and struc-
tured with modified layers such as ReLU and Dropout.
They also used more powerful hardware to perform float
computations. These ideas and practices have laid the foun-
dation for modern convolutional neural networks. Since
then, more and more research works have shown the sig-
nificant advance of CNNs over contemporary state-of-art
methods on large datasets. Today, convolutional neural
networks have been successfully applied for object detec-
tion [50, 56, 17, 21, 20, 47], image classification [32, 55],
image segmentation [36], motion detection [48] and inter-
disciplinary tasks of computer vision and natural language
processing [60, 30, 31]. In the meanwhile, open source
deep learning tools such as Caffe [28] have been emerg-
ing and aggregating functions from the most recent research
works. This provides another propulsion of the develop-
ment of deep learning in computer vision.

This survey aims to provide a profile of architecture of
a modern convolutional neural network, and to introduce
some of most important applications in broad topics in com-
puter vision and natural language processing. This survey
is organized as follows. In Section 2, we will review the
overall structure of a typical convolutional neural network.
In Section 3, we will discuss the functions and evolutions

1

of various types of layers in convolutional neural networks.
In Section 4, we will dive into technique details of training
a convolutional neural network. In Section 5, we will intro-
duce the state of the art convolutional neural network and
discuss the keynotes of its success. In Section 6, we will dis-
cuss the deep features extracted from convolutional neural
network layers as generic descriptors to represent images.
In Section 7, we will show an example that image deep fea-
tures are transformed and concatenated to represent video
motions. In Section 8, we will review the efforts of visual-
izing and understanding convolutional neural networks. In
Section 9, we will introduce the state of the art objection
detection method which utilizes the power of deep features.
In Section 10, we will discuss recent efforts of combining
deep neural networks to model joint distribution of images
and texts.

2. Neural Network Architectures
Though it has been over 25 years after the first con-

volutional neural network was proposed, modern convo-
lutional neural networks still share very similar architec-
tures with the original one, such as convolutional layers,
and share similar training scheme such as forward and back-
ward propagation. In this section, we will give a profile of a
typical convolutional neural network and introduce the most
important ideas in design of a convolutional neural network.
In rest of this survey, we will use the term CNN and convo-
lutional neural network interchangeably.

Firstly, we will introduce three most import convolu-
tional neural network incarnations that frequently referred
in this paper: LeNet, ConvNet, and VGGNet. The LeNet
was firstly introduced by LeCun et al. [33] in 1989 and de-
veloped to mature in [34] in 1998 to recognize hand-written
digits. LeNet is often seen as the prototype of a modern
CNN. Its structure is shown in Figure 1. The ConvNet was
proposed by Krizhevsky et al. [32] in 2012 for ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC) com-
petition, and started the era of deep learning in computer
vision. Those creative ideas brought by ConvNet such as
data augmentation and rectified linear activation function
have been proven critical to training a great scale modern
CNN. Its structure is shown in Figure 2. The VGGNet is
an improvement of ConvNet in 2014, and its practice of us-
ing deeper layers and smaller convolutional filters has been
widely accepted to improve performance. It is also a stan-
dard CNN of generating image deep features in many deep
learning related works.

By observing these three types of CNNs, the common
factor is that the first several layers are consisted of convo-
lutional layers, activation layers and sub-sampling layers.
These layers form a hierarchical way to extract local fea-
tures from input and combine them to higher level features.
The last few layers in common are those fully connected

layers which compress image feature maps to 1-D vectors
to facilitate the classification task. The details of the layer
connections and dimensions are also shown in Table 1.

Convolutional Neural Networks Configurations
LeNet ConvNet VGGNet

5 weight
layers

8 weight
layers

16 weight
layers

Input
(28 × 28

gray image)

Input
(224 × 224 RGB image)

conv
6@5x5

conv
96@11x11

conv 64@3x3
conv 64@3x3

pooling
conv

16@5x5
conv

256@5x5
conv 128@3x3
conv 128@3x3

pooling

NA

conv
384@3x3

conv 256@3x3
conv 256@3x3
conv 256@3x3

pooling

conv
384@3x3

conv 512@3x3
conv 512@3x3
conv 512@3x3

NA pooling

conv
256@3x3

conv 512@3x3
conv 512@3x3
conv 512@3x3

pooling
fc-120 fc-4096
fc-84 fc-4096
fc-10 fc-1000
RBF softmax

Table 1: LeNet, ConvNet and VGGNet Architectures

2.1. Feature Maps and Weight Sharing

In a regular neural network, hidden units, also known
as neurons, are organized as 1-D vectors. However, due to
the nature of images, hidden units in a CNN are generally
organized as 2-D planes which we call feature maps. A
convolutional layer may have 10s to 100s of feature maps
due to the width of this layer. A feature map is obtained by
applying convolution operations upon input image or previ-
ous features with a linear filter, adding a bias term and then
applying a non-linear function. In another word, each unit
in a feature map receives inputs from the combination of a
p× p area of a subset or all of the features maps of previous
layers. The combined areas are called the receptive fields of
this unit. A simple 1D example is shown in Figure 3 to il-
lustrate this connectivity. The interval of the receptive fields

2

Figure 1: Architecture of LeNet taken from [34]. Two convolutional layers and two sub-sampling layers are interleaved to
form the first four layers. Activation layers (not shown) are appended after every layer up to F6. Two fully connected layers
are attached after the last sub-sampling layers to vectorize image representations. The last and output layer is composed of
Euclidean Radial Basis Function (RBF) units which output the Euclidean distance between the network outputs and ground
truth labels for 10 classes.

Figure 2: Architecture of ConvNet taken from [32]. Five convolutional layers and three sub-sampling (shown as max-pooling)
layers are interleaved to form the first eight layers. Activation layers (not shown) are appended after convolutional layers.
Two fully connected layers are attached after the last sub-sampling layers to vectorize image representations as in LeNet but
with much higher dimensions. The last and output layer outputs the softmax loss of the network predictions for 1000 classes.

of neighboring units is called stride. The receptive fields of
two neighboring units in a same feature map may overlap if
stride is less than receptive field width. Figure 4 from [1]
illustrates another important fact that units in a feature map
share same weights since the same convolutional filter is
used to scan over all possible receptive fields of previous
feature maps.We will call these shared weights as convolu-
tional filters or convolutional kernels interchangeably.

Shift invariance is achieved from weight sharing for the
reason that if the input image is shifted the feature maps
would shift to a same amount. Considering an image as in-
put, elementary visual features such as edges and corners
will be extracted at first, and then combined in upper layers
to form high-level features. Since those elementary features
could appear in any part of an image, shift invariance is im-

portant for being able to capture them.
Weight sharing has another practical benefit of greatly

reducing the number of free parameters. In LeNet as shown
in Figure 1, convolutional layer C3 has 16 feature maps,
each unit in each feature map is connected to a 5× 5 neigh-
borhood in each or some of the feature maps in previous
layer S2. So the upper bound of the number of free parame-
ters is (kernel size + bias)×|S2|×|C3|= (5×5+1)×6×16
which is of asymptotic complexity O(|S2||C3|), given the
kernel size is a fixed small number. That means the number
of free parameters to learn will not explode with the input
size.

3

Figure 3: A 1D example of sparse connectivity between ad-
jacent layers. Each unit in layer k receives input from 3
units in layer k−1, and thus has a receptive field of 3. Sim-
ilarly, each unit in layer k+1 also has a receptive field of
3 with respective of layer k, but has a receptive field of 5
with respective of layer k-1. Layer k and k-1 are sparsely
connected, while layer k+1 and k are fully connected. Also
notice that units at layer k have overlapping receptive fields
of stride 2.

Figure 4: A 1D example of weight sharing of a feature map.
The feature map in layer m contain three units. Each unit
has a receptive field of 3 units in layer m-1, which get con-
voluted by a shared filter of size 3. The filter is shared across
units in feature map, and thus the connections of same color
in figure have the same weight value.

2.2. Sub-sampling

Sub-sampling, also known as pooling, is another impor-
tant concept in CNN. The benefits of doing sub-sampling is
to reduce feature dimensions, and thus computational costs
by discarding non-maximum local values. The typical ex-
ample is that the input of ConvNet has dimension 224×224
while its last fully connection layer only has 1 × 4096 af-
ter three pooling layers. Moreover, sub-sampling could
provide robustness against noise and distortions in feature
maps. The spatial resolution of feature maps is reduced and
the coarse- resolution feature maps retain more distinctive
patterns we are interested in. We will discuss sub-sampling
layers in detail in Section 3.2.

2.3. Loss Functions

One of the most important questions of designing a neu-
ral network is how can we evaluate the performance of the
whole system, or, how can be measure the errors. For a
neural network of classification or regression task, we can
define a loss function l given output of a neural network and
ground truth of input data x. Given loss function l for a sin-
gle training data, we can define loss function L over dataset
x as

L(x,W) =
1

N

N∑
i=1

l(xi,W) (1)

The minimization of loss function with respective to model
parameters turns out to be a optimization problem repre-
sented as

W ∗ = arg min
W

L(x,W) (2)

In following two subsections, we will introduce two types
of loss functions for different tasks.

2.3.1 Sum-of-Squares

The Sum-of-Squares loss function computes the sum of
squares of differences between the predicted output of the
neural network and the ground truth label of data under a
supervised learning scheme.

L =
1

2N

N∑
i=1

‖oi − yi‖2 (3)

Here we assume that the output is o = {o1, o2, ..., oN},
while the ground truth label is y = {y1, y2, ..., yN}. Sum-
of-squared errors are usually used as measure of fitness be-
tween the model and data for a regression task.

2.3.2 Softmax

The Softmax loss layer computes the cross entropy of the
softmax of outputs of neural network, and is usually used
for classification task. The softmax loss function is

L = −
∑
j

yj log pj (4)

where
pj =

eoj∑
k e

ok
(5)

Here we assume output vector is o = {o1, o2, ..., oN}, soft-
max of outputs is p = {p1, p2, ..., pN}, and the ground truth
label is y = {y1, y2, ..., yN} which is a 1-of-N encoding,
with constraints

∑
k ok = 1 and

∑
k yk = 1. One benefit

of using softmax output is that the values of all output units

4

sum to 1, so the output can be interpreted as probability
distribution over all classes under a classification problem
domain. For example, ConvNet has an output layer of 1000
units corresponding to 1000 class labels of the ImageNet
classification data set, and softmax of outputs are naturally
interpreted as probability of each class. Another benefit of
using softmax activation function and cross-entropy error
function is that the derivative of loss L with respect to out-
puts o has a surprisingly succinct form. Firstly, we take
derivative of pj with respect to oi,

∂pj
∂oi

=

{
pi(1− pi) i = j

−pipj i 6= j
(6)

The derivative of L with respect to oi is,

∂L

∂oi
= −

∑
j

yj
∂ log pj
∂oi

= −
∑
j

yj
1

pj

∂pj
∂oi

= −

yi(1− pi) +
∑
k 6=i

−piyk

= −yi +

∑
k

piyk

= pi − yi

(7)

If we write this result in vector form of o, we get

∂L

∂o
= p− y (8)

where p = {p1, p2, ..., pN} This nice property of softmax
loss layer greatly facilitates error back-propagation during
training of a neural network. It is also noteworthy that with
softmax activation function and cross-entropy error func-
tion, the output layer of neural network is equivalent to a
logistic regression model in which inputs are image fea-
tures from last fully-connected layer and parameters are es-
timated by maximum likelihood [24].

2.4. Gradient-Based Parameter Optimization

The learning goal of CNN is to minimize the loss func-
tion with respect to the network parameters of each layer.
This goal is at the heart of many other machine learning
methods such as Bayesian and SVM models. Gradient
learning method is based on the fact loss function Eq(1)
could be minimized by estimating effects of small varia-
tions of parameter values on loss function. The quantities
of the effects are measured by the gradient of the loss func-
tion with respect to the parameters. Let’s consider at each
training step a mini-batch of training data x1...m of size m

as input. The mini-batch is used to approximate the gradient
of the loss function with respect to parameters by

W ∗ = arg min
W

∂L(x1...m,W)

∂W
(9)

In following two subsections, we will discuss two widely
used gradient-based methods. In Section 4, we will discuss
how to take gradient of loss function with respective to pa-
rameters of each CNN layer.

2.4.1 Gradient Descent

Let’s recall that the loss function L(W) of Eq(1) is a
function of model parameters W . The basic gradient-based
updating method, which is called gradient descent, is to it-
eratively update W by negative gradient of loss function on
a mini-batch:

Wt+1 = Wt − ε
∂L(Wt)

∂W

Here, ε is a small fixed value which is called learning rate
or learning step. Learning rate value is usually problem de-
pendent and sometimes critical to performance.

2.4.2 Stochastic Gradient Descent

An improved gradient-based method, which is called
stochastic gradient descent, updates the weights W by a
linear combination of the negative gradient∇L(W) and the
previous weight update ∆Wt such that

∆Wt+1 = µ∆Wt − ε∇L(Wt)

Wt+1 = Wt + ∆Wt+1

Here, learning rate ε is the weight of the negative gradient;
momentum µ is the weight of previous update. Sometimes,
an additional term called weight decay is added as a regu-
larizer:

∆Wt+1 = µ∆Wt − ε∇L(Wt)− η · ε ·W

Krizhevsky et al. [32] reported that weight decay term could
reduce training error of a ConvNet. Stochastic gradient de-
scent is more robust to noise in training data, since a sudden
change in gradient is diluted and thus puts less affects on
changes of parameters.

2.4.3 Discussion

The drawback of gradient descent method is that the
learning rate ε is fixed, but a smaller learning rate is usu-
ally needed in later stage of training. To overcome this,
manually setting learning rate ε at different training stages
is a common practice, usually after a certain amount of

5

epochs or after validation error stops improving. For ex-
ample, in training of ConvNet, Krizhevsky et al. initialized
ε at 0.01, and divided it by 10 when validation error stops
improving [32]. Also in some deep learning package like
Caffe [28], dropping learning rate is an option of training
protocol.

Gradient descent optimization methods only use first-
order derivative information of target function, which is fol-
lowing the steepest descent direction at each step. Another
iterative method commonly used to find optimal solution of
a target function is Newton’s method (or Newton-Raphson
method). Newton’s method is to find root of f ′(x) = 0 by

xn+1 = xn −
f ′(xn)

f ′′(xn)

In neural network scenario, loss function is f(x), and opti-
mal configuration of parameters is found by setting f ′(x) =
0. If we want to utilize full Newton’s methods, the inverse
of Hessian f ′′(x) has to be built. This is considered too
costly in a complex model, not to say for a deep neural net-
work. Gradient descent method is equivalent to Newton’s
method with inverse of Hessian matrix to be identical ma-
trix. However, we generally want to preserve second-order
information. Traditional optimization method which takes
advantage of second-order information is to approximate in-
verse Hessian directly without explicitly calculating Hes-
sian matrix. Such a class of optimization method is called
Quasi-Newton method [63], including BFGS, LBFGS, etc.
The advantage of using second-order information is that
it converges super-linearly and it is less sensitive to ini-
tial values [6]. Its disadvantage is that it is much slower
than using only first-order derivative at a single step, and
it has to store more information and thus consumes more
memory. There is little research of applying Quasi-Newton
method to CNN, and thus the trade-off between conver-
gence rate and per-step time remains unknown. What’s
more, it is a question whether second-order information col-
lected on mini-batch is stable enough. Research of applying
Quasi-Newton methods on logistic regression [6] shows its
fast-convergence and better performance on middle-scale
model. Future work on large-scale model such as CNN is
expected to be shown in next few years, in the urgent need
of speeding up training of a large-scale CNN not only in
system perspective like using GPU, but in algorithm per-
spective with theoretic foundations.

2.5. Regularization

Regularization is widely used in statistical methods to
control the complexity of the model in avoid of overfitting.
One phenomenon of overfitting is that the training error de-
creases consistently during training stage, while error on
validation set starts to increase at certain point. The more
number of parameters of a model, the more risk the model

is overfitting training data. In a deep CNN, overfitting is
even more likely to happen with the exploding number of
parameters of its layers. In ConvNet, for example, there are
nearly 2,500,000 trainable parameters.

One method of reducing overfitting is to introduce a reg-
ularization term to the error measure in order to control the
model complexity. The loss function with regularization
term could have the form

Lreg(W) = L(W) + ηr(W) (10)

where L(W) is the loss functions defined in Section 2.3,
r(W) is the regularization term of parameters W we want
to regularize, and η controls the level of regularization. This
regularized loss function is also seen in lasso and ridge re-
gression, as well as many other statistical methods.

The gradient of this regularized loss function Lreg(W)
is nothing more than the gradient of original loss function
L(W) plus the gradient of regularization term ηr(W)

∇Lreg(W) = ∇L(W) + η∇r(W) (11)

A commonly used regularization term is in form of

r(W) = ‖W‖2F =
∑
i,j

|Wij |2 = Tr(WWT) (12)

Its gradient is easily taken as [43]

∂ r(W)

∂ W
=
∂ Tr(WWT)

∂ W
= 2W (13)

Bishop [4, Chapter 5.5.5] has a discussion which shows
equivalence between using data augmentation technique
and adding regularization term to error function.

2.6. Dropout

Dropout is another regularization technique which ran-
domly skips certain hidden neurons at each training iter-
ation with probability of p, say 0.5. Those skipped neu-
rons which are so-called ”dropped out” will not contribute
to either forward pass or backward pass of this iteration.
Dropout is usually applied to fully-connected layers of
CNNs at training stage. At testing stage, dropout is turned
off, and each neuron output is given reduced weight by a
factor of (1 − p). This technique ensures the sparsity of
learned features and thus reduces model complexity. In an-
other point of view, dropout forces to break potential co-
occurrences of certain features, and therefore makes the
network to learn more distinctive and robust features [32].
Dropout technique is not limited to CNNs. It is a common
technique could be applied to various kinds of neuron net-
works. For example, in recurrent neural networks (RNNs),
dropout could be applied on non-recurrent connections to
achieve better results [64].

6

2.7. Data Augmentation

Data augmentation is such a technique that can reduce
overfitting by artificially increasing the size of training set
at very low cost. It is usually done by making label-
preserving transformations which produce multiple copies
of each original data instance without changing the label.
Cropping and flipping are two widely used forms of data
augmentation in most CNN implementations [32, 7]. Flip-
ping is to produce horizontal reflections of training images.
Cropping is to randomly extract multiple slightly smaller
frames from original images. For example, Krizhevsky et
al. firstly down-sample and crop all ImageNet images to a
fixed resolution of 256×256, and extract random 224×224
patches and their horizontal reflections to enlarge the origi-
nal training set by a factor of 2048 [32]. At test time, four
corner patches and the center patch (along with their reflec-
tions) of size 224× 224 are extracted from each testing im-
age and predictions are made by averaging the predictions
of all ten patches. Szegedy et al. [55] propose cropping a
same image in different scales instead of a fixed scale being
down-sampled to. Specifically, they resize images to four
scales where each image has a shorter dimension of256,
288, 320 and 352 respectively. Then they take left, right
and center (or top, bottom and center) square patches of
these resize images. Finally they take the four corners and
center crop of size 224 × 224, together with the squares,
and their mirrors as input images. Other data augmenta-
tion methods include contrast and color jittering, and adding
Gaussian noise.

3. CNN Layers
As fundamental building blocks of CNNs, CNN layers

have shown their variety and flexibility both in their de-
signed structures and the connections. The efforts in mod-
ifying layer structures and connections have led to the pos-
sibility of training a CNN faster and of making it perform
better. In following subsections, we will introduce common
layers of modern CNNs and their functions.

3.1. Activation Layer

Activation layer is usually in the form of an activation
function on top of a layer’s outputs. The main purpose of
activation functions is to introduce non-linearity into neural
networks. Without activation functions, the whole neural
network would be a linear transformation from input to out-
put. The output of activation layer l is the application of
activation function upon feature maps of layer l-1. Mathe-
matically,

xl = f
(
xl-1) (14)

There are several types of activation functions which are
widely used: ReLU (Rectified-Linear Unit), Sigmoid and
TanH (Hyperbolic Tangent), etc.

Figure 5: ReLU, Leaky ReLU, Sigmoid and Tanh functions

3.1.1 Sigmoid

The definition of sigmoid function is

σ(z) =
1

1 + exp(−z)
(15)

Sigmoid function will squash the input onto interval [0, 1],
as shown in Figure 5. The derivative of a sigmoid function
is

σ(z)′ = σ(z)(1− σ(z)) (16)

3.1.2 Tanh

Tanh function, also known as hyperbolic tangent func-
tion, can be viewed as a linear transformation of sigmoid
onto interval [−1, 1], as shown in Figure 5. The definition
of tanh function is

tanh(z) =
ez − e−z

ez + e−z
(17)

The derivative of a tanh function is

tanh(z)′ = 1− tanh(z)2 (18)

3.1.3 ReLU

In a conventional neural network before 2012, sigmoid
or tanh were the default activation functions. The problem
of sigmoid and tanh is their outputs can easily get saturated
to 0 or 1 for sigmoid and +1 or −1 for tanh, as shown in
Figure 5. The saturated outputs will make gradients van-
ish, which can be easily seen by putting saturated values to

7

Eq(16) and Eq(18). This greatly slows down training a neu-
ral network, and makes it more possible to trap into local
minimum.

ReLU, short for Rectified-Linear Unit, was introduced
in 2010 by Nair and Hinton [40] to speedup the converge
of training neural networks. ReLU has the benefit that it
does not get saturated, also it’s efficient to compute a rec-
tified linear function. ReLU gives the possibility to train
much larger neural networks like CNN. The definition of a
rectified function is

f(x) = max(0,x) (19)

In CNN, layer outputs are usually feature maps with two
dimensions. In this case, x is a matrix and max is elemen-
twise applied on each matrix element. A variant of ReLU,
which is called Leaky ReLU, allows a small, non-zero value
even if the unit is not active. The definition is

f(x) =

{
x x > 0

0.01x otherwise
(20)

ReLU and Leaky ReLU functions are shown in Figure 5.

3.2. Pooling Layer

Pooling layer, also referred as sub-sampling layer or
down-sampling layer, is to sub-sample the feature maps ob-
tained by previous layers. Pooling layers bring benefits to
CNNs in two ways: it reduces computations for upper lay-
ers by reducing dimensions of feature maps; it provides ro-
bustness to noise and small distortions [27] and achieves
translation invariance [34] by reducing spatial resolution,
and thus increases the richness of the representation of the
features.

There are two types of pooling layer widely used in
CNNs. Average pooling is to compute the average value
within each pooling window across feature maps of layer
l-1 as one unit of corresponding feature map of layer l. Max
pooling is to compute the maximum value within each pool-
ing window across each of the feature map of layer l-1 as
one unit of corresponding feature map of layer l. A good
illustration of max pooling operation from Zeiler [65] is
shown in Figure 6. The right part of the figure shows pool-
ing operation during forward propagation. In a pooling win-
dow, i.e. 2× 2 in this case, maximum value is retained, and
its position in pooling window is also recorded in a ”Switch
Map”, or we call it position mask. The left part of the fig-
ure shows unpooling operation during backward propaga-
tion, which we will discuss in Section 4.1. In another point
of view, pooling operation is a special case of convolution.
Average pooling operation is equivalent to applying a aver-
age filter, while max pooling is similar to applying a varying
filter which has value 1 at maximum value while 0 every-
where else.

Figure 6: An illustration of max pooling operation from
Zeiler [65]. The right part shows pooling operation dur-
ing forward propagation. Local maximum values in each
2 × 2 pooling windows are placed to pooled feature maps
and their positions are recorded in mask. The left part shows
unpooling operation during backward propagation. Sensi-
tive maps are up-sampled and values placed back to posi-
tions recorded in mask.

Overlapping and non-overlapping pooling windows are
both used in different architectures of CNNs. A pooling
window of typical size 2 × 2 in layer l-1, with stride spec-
ified as 2, will result in a non-overlapping subs-ampling of
the feature map and reduce its width and height to half each.
However, if the stride is 1 instead, each pooling window
is overlapping: all pixels except those at borders are sub-
sampled twice, and the size of the feature map is almost
unchanged after sub-sampling.

3.3. Fully Connected Layer

In a regular neural network, each neuron in a fully con-
nected layer receive inputs from all neurons in previous
layer. Their activations can be computed by a matrix multi-
plication followed by a bias offset addition during forward
propagation. In a typical CNN, the feature maps of last
convolutional layer are vectorized and fully connected with
output units, which are followed by a softmax loss layer. As
discussed in Section 2.3, this structure turns convolutional
structure to traditional neural network classifiers. In Con-
vNet, two fully connected layers of size 4096 and the final
fully connected layer with 1000 output units that compute
the class scores are attached to the last convolutional layer,
as shown in Figure 2.

It is also interesting to find that a fully connected layer
is a special case of a densely connected convolutional layer
with filter size of the same as the feature maps. We can il-
lustrate this with ConvNet example. The last convolutional
layer of ConvNet yields 256 feature maps of size 7 × 7.
Instead of vectorizing them into a 7 × 7 × 256 vector and
have full connections with 4096 neurons as in [32], we re-
place fully connected layer with a convolutional layer of
4096 × 256 filters of size 7 × 7 which yields 4096 feature
maps of size 1× 1. We also replace second fully connected

8

layer with a convolutional layer of 4096 × 4096 filters of
size 1 × 1. Finally, we replace the last fully connected
layer with a convolutional layer of 4096 × 1000 filters of
size 1× 1. This conversion yields a ”full convolutional net-
work” equivalent with ConvNet but without any fully con-
nected layer. This allows us to ”slide” the original CNN
over many spatial positions in a larger image, in a single for-
ward pass. The following example is given by Karpathy [2].
ConvNet has a 224 × 224 image as input and gives feature
maps 7× 7× 512 at its fifth convolutional layer - i.e. a size
reduction by 32. By converting ConvNet’s fully connected
layers to convolutional layers, we can forward an image of
size 384 × 384 through the converted architecture and get
an equivalent volume of size 12× 12× 512, with same size
reduction by 32. Following through with the next 3 convo-
lutional layers converted from fully connected layers would
give the final volume of size 1 × 1 × 1000 for 224 × 224
input and volume of size 6× 6× 1000 for 384× 384 input
image, with calculation (12 − 7)/1 + 1 = 6. By feeding
a larger image into converted ConvNet, we are now getting
6 × 6 array of 1000 class scores across the 384 × 384 im-
age. In another word, forwarding converted ConvNet with
a 384× 384 image just one time is equivalent to evaluating
the original ConvNet with fully connected layers indepen-
dently across 224 × 224 crops of the 384 × 384 image in
strides of 32 pixels, but much more efficiently.

3.4. Convolutional Layer

At a convolutional layer l, previous layers’ feature maps
are convolved with learnable kernels to form the output fea-
ture maps at this layer. Let the i-th feature map at layer l
denoted as xl

i, and j-th feature map at layer l-1 denoted as
xl-1
j . xl

i is computed as

xl
i =

∑
j∈Mi

klij ∗ xl-1
j + bli (21)

for i = 1, 2, ..., |M |. Here, bli is a bias term shared across
all connections to i-th feature map, |M | is number feature
maps at layer l. Mi represents a subset of feature maps at
layer l-1 that connected to units i at layer l. In LeNet, a
group of manually selected subsets were specified, while in
many other CNNs layer l and l-1 are fully connected. As
we can see, there will be at most |M | × |N | learnable ker-
nels at convolutional layer l, assuming |N | feature maps at
previous layer and feature maps in l and l-1 are fully con-
nected. Figure 7 illustrates an example of fully connections
between convolutional layer l and l-1.

The size of kernel k, which decides the size of the recep-
tive field, is usually set to a small value. For example, LeNet
sets the size to 5 × 5 for all three of its convolutional lay-
ers, while ConvNet and VGGNet have even smaller kernels.
The benefit of making the kernel size small is that kernels

Figure 7: Convolutional layer l is fully connected with layer
l-1. Units in feature maps in layer l are computed from their
receptive fields of units in layer l-1. Since these two layers
are fully connected, receptive field of unit in convolutional
layer l spans all feature maps in layer l-1.

can scan over overlapping pixels and the feature maps can
retain more local details [65].

4. Backpropagation Through Layers

In Section 2.4, we have discussed that the key step of up-
dating model parameters by using gradient-based methods
is to take gradient of loss function with respective to param-
eters. Back-propagation is such an efficient way to calculate
gradients of parameters in each layer of a neural network.

The basic idea of back-propagation is that gradients can
be efficiently computed by tracing from output layer back to
input layer in sequence. In another word, derivatives of loss
function L with respect to the network parameters can be
computed from higher layers to lower layers by using chain
rule. This is done by storing the error message arriving at
one layer l as δl. δl could be viewed as the ”sensitivities” of
parameters at this layer, i.e., how much perturbations would
it undertake when the loss function changes one unit.

Let superscript l denote the current layer, L denote the
output layer. For clarity, we use E to denote the loss func-
tion. Let’s consider a general neural network. The output of
each layer can be defined as

xl = f (ul), ul = W lxl-1 + bl (22)

where f is activation function. Define sensitivities at layer
l as δl

δl =
∂E

∂ul
(23)

9

Use chain rule and (22) to get δl-1

δl-1 =
∂E

∂ul-1

=
∂E

∂ul

∂ul

∂ul-1

=
∂E

∂ul

∂ul

∂xl-1

∂xl-1

∂ul-1

= (W l)Tδlf ′(ul-1)

(24)

By reusing δl we could compute δl-1, and thus compute all
δl from L-1 to 1 in a cascade way. For the output layer with
Softmax loss function as described in Section 2.3.2, δL is
given by

δL =
∂E

∂uL

=
∂E

∂y

∂y

∂uL

= (y− t)f ′(uL)

(25)

With help of cached δl, we can define the derivative with
respect to actual weights in an elegant manner.

∂E

∂W l
=
∂E

∂ul

∂ul

∂W l
= xl-1(δl)T (26)

In a regular neural network, Eq(22) could well define the
layer connections, so that Eq(22, 25, 26) give the complete
rules to update parameters. However, in spite of fully con-
nected layers, CNNs have more distinctive layers such as
convolutional layer, pooling layer, and also have special ac-
tivation functions such as ReLU. Therefore, how to back-
propagate derivatives through such layers and how to ap-
ply Eq(25, 26) to calculate the gradients of weight parame-
ters deserve more details. We will discuss them in following
subsections.

4.1. Gradient of Pooling Layer

In Section 3.2, we have discussed two different types
of pooling layers: average pooling and max pooling.
Pooling layers generally don’t have learnable parame-
ters themselves, so the only important procedure during
back-propagation is to compute the error messages passed
through pooling layers. By following convention of [5],
we introduce two operators down and up: down represents
down-sampling operation of pooling layers during forward
propagation, and up represents up-sampling operation upon
error signals from above layers during backward propaga-
tion. Mathematically,{

xl = down
(
xl-1

)
pooling

δl-1 = up
(
δl
)

unpooling
(27)

where down(·) down-samples a small neighborhood of
pooling window size to the max value and average value
for max pooling and average pooling respectively in for-
ward propagation; up(·) up-samples one unit of sensitivity
map δ to its origin neighborhood by placing the value at the
position where the max value was for max pooling, and set-
ting all sampled units to this value for average pooling in
backward propagation. An efficient implementation of max
pooling is to record the positions of all local maxima of each
neighborhood as a binary mask matrix (or switches) dur-
ing forward propagation. During backward propagation, as
shown in left part of Figure 6, we firstly up-sample the sen-
sitivity map from above layer and then apply mask matrix
upon it to recover sensitivities at locations of local maxima.
The up-sampling operation can be mathematically defined
by Kronecker product [5]

up(x) = x⊗ 1w×w

where w is window size. A non-overlapping pooling layer
will reduce the feature map by a factor of window size at
each dimension. Sometimes we may desire keeping the fea-
ture map size unchanged. In this case, we can either use
overlapping pooling window or pad units to feature maps
before pooling [53].

4.2. Gradient of Convolutional Layers

In convolutional layers, feature maps from the lower lay-
ers are convolved with learnable kernels, as we discussed in
Section 3.4. Now we discuss how to back-propagate errors
through convolutional layers and how to update kernels and
biases. The content of this subsection is mostly discussed
in [5].

As shown in Eq(21), kernel klij is shared across all
patches in the j-th feature mapxl-1

j at layer l-1. Let (xl-1
j)uv

be one patch in xl-1
j of kernel size. By nature of convolu-

tion, (pl-1j)uv is multiplied by klij element by element and
summed to compute (u, v)-th element of i-th feature map at
layer l. To illustrate this, we rewrite each element of Eq(21)
individually as

xl
i =

∑
j∈Mi

klij ∗ xl-1
j + bli

(xl
i)uv =

∑
j∈Mi

(
klij ∗ (xl-1

j)uv
)

+ bli
(28)

Let (δli)uv be (u, v)-th element of the i-th sensitivity map
at layer l during back-propagation. Let’s introduce an op-
erator flip(·) first. flip(·) flips input horizontally and
vertically, which is corresponding to the first step of dis-
crete convolution. For one patch, the gradient for klij
is flip

(
(δli)uv(xl-1

j)uv
)
. Since klij is shared across all

patches in this feature map, we sum the gradients from all

10

patches as total gradient for klij

∂E

∂klij
= flip

(∑
u,v

(δli)uv(xl-1
j)uv

)
= flip

(
corr(δli,x

l-1
j)
)

= flip
(
flip(δli) ∗ xl-1

j

)
= δli ∗ flip(xl-1

j)

(29)

where corr(·, ·) is cross-correlation operator, and it is
equivalent to flipping one of the element and convoluting
each other. Eq(29) shows that the derivative of kernel is
another convolution. The bias bli is added to every unit of
feature map xl

i, thus the partial derivative of E with respec-
tive to bli is given by

∂E

∂bli
=
∑
u,v

(δli)uv (30)

To pass sensitivity map δli through convolutional layer, we
use Eq(28) again and have

δl-1j =
∂E

∂xl-1
j

=
∑
j∈Mi

∂E

∂xl
i

∂xl
i

∂xl-1
j

(δl-1j)uv =
∑
j∈Mi

(
∂E

∂xl
i

)
uv

(∂xl
i)uv

(∂xl-1
j)uv

=
∑
j∈Mi

(δli)uv · flip(klij)

(31)

or simply

δl-1j =
∑
j∈Mi

δli ∗ klij (32)

4.3. Gradient of Activation Layers

At activation layer l, feature maps at layer l-1 is applied
with activation function and passed on to higher layer l+1.
Since activation layers generally have no learnable parame-
ters, the only important procedure during back-propagation
is to compute the error messages δl-1 from δl and pass to
its lower layer. By using Eq(14), we can derive the error
messages δl-1 in the following way

δl-1 =
∂E

∂xl

∂xl

∂xl-1

= δlf ′(xl-1)

(33)

When activations function is sigmoid or tanh, substitute
f ′(·) with Eq(16) or Eq(18) will complete Eq(33). When
activation function is ReLU, as shown in Eq(19), in addition
to storing the rectified result xl, we should better cache a

mask matrix M to store positions of elements of xl-1 which
are positive and not rectified to 0 in forward propagation.
Mask matrix M is used for efficient back-propagation since
only at non-zero positions error messages are allowed to
pass, otherwise error messages are zeroed out. Mathemati-
cally, Eq(33) is reduced to

δl-1 = δl ·M (34)

4.4. Discussion

One problem of gradient-based methods is that the solu-
tion could be local minima instead of global minima. But
this seems to be not a problem of neural networks. LeCun et
al. conjectured that an oversized network compared to the
difficulty level of the task is not likely to trap into local min-
ima due to the extra dimensions of parameter space [34].

5. State of the Art CNN
Until ILSVRC 2014 (Imagenet Large Scale Visual

Recognition Challenge), the state of the art CNN architec-
ture in classification task is called GoogLeNet, proposed
by Szegedy et al. [55]. Their success lies in introducing
a special dimension reduction module which explores the
sparsity inside convolutional layer, and thus allows increase
in both depth and width of GoogLeNet without explod-
ing computations. Later, Ioffe and Szegedy [26] proposed
adding a Batch Normalization step before every activation
layer of CNN, and batch-nomalized GoogLeNet has further
boost its performance. We will discuss GoogLeNet archi-
tecture in 5.1 and batch normalization technique in 5.2

5.1. GoogLeNet

The importance of the size of a CNN architecture to its
performance has been demonstrated in [53]. The size of a
CNN has two dimensions, the depth – number of layers, and
the width – number of units at each layer. Two main rea-
sons prevent unlimitedly increasing size of a CNN. Firstly,
a network with a large number of parameters is prone to
overfitting when labeled training data is limited. Secondly,
a practical training time and usage of memory is always the
concern.

The above question can be abstracted to “how to in-
crease the size of a CNN while keep the parameters in lim-
ited number”. In a densely connected CNNs, any linearly
increased layer size will result in quadratically increased
number of connections between adjacent layers. However,
recent works [13, 35] have shown there is heavy redundancy
of CNN parameter. Szegedy et al. proposed to use sparsely
connected architectures instead of current fully connected
architectures of CNN inside convolutional layers. Let’s take
a brief review of Section 3.4. Parameter Mi of Eq(21) in-
dicates the subset of feature maps at layer l-1 connected
to units i at layer l. In Krizhevsky’s ConvNet [32], this

11

Figure 8: Inception layer of GoogLeNet. Two 1 × 1 con-
volutions stacked before expensive 3 × 3 and 5 × 5 convo-
lutions are used to reduce dimensions, and also combined
with ReLU activation.

inter-layer connection is dense and Mi includes all units of
layer l-1. However, the sparse connection concept can be
traced back to LeNet [33]. A manually set mapping table
determines subsets of connections between the third con-
volutional layer feature maps with previous ones, in order
to break symmetry. This inspires Szegedy et al. to design a
new layer type called Inception layer which can find optimal
local sparse structure automatically by using existing CNN
components. Figure 8 shows the structure of an inception
layer. 1 × 1 convolutions are used for two purposes: to re-
duce number of feature maps by linearly combing them be-
fore costly 3×3 and 5×5 convolutions, and to apply ReLU
activation function upon reduced feature maps. Those 1×1
convolutional kernels are of actual size M × 1 × 1 × N ,
if we denote M as input feature maps and N as output
feature maps number. When M > N , dimension reduc-
tion is achieved. In GoogLeNet, nine such inception lay-
ers are stacked together after the first two regular convolu-
tional layers, with five pooling layers inserted to halve the
resolution of feature maps. In ILSVRC 2014 classification
task, Szegedy et al. trained seven versions of GoogLeNet
independently and averaged their softmax probabilities over
all individual classifiers to obtain final prediction. The en-
semble of GoogLeNet achieved the 1st place in top-5 error
which was 6.67% and slightly better than the 7.32% of 2nd
place VGGNet.

5.2. Batch Normalization

As discussed in Section 2.4, the subset of training data on
which CNN is trained at each forward-backward propaga-
tion is called mini-batch. The general practice of generating
mini-batches is to shuffle training data first and divide into
batches of equal size. Each mini-batch has different distri-
bution with the whole dataset, which could be distinctive
for small batch size. The consequence is the distribution

of layers’ input are constantly changing, thus layers have to
adapt to new distribution at each iteration. The change in in-
put distribution is called covariate shift [52], and the subse-
quent change in neural network layers’ activations is called
internal covariate shift. Internal covariate shift slows down
the training of CNNs. Ioffe and Szegedy [26] propose to
use a technique called Batch Normalization to reduce inter-
nal covariate shift and accelerate the training of deep neural
nets.

Normalization of inputs is not a new concept. In LeNet,
all input images are linearly transformed to have zero
mean and unit variance in order to achieve faster training
speed [34]. Ioffe and Szegedy call this operation whitern-
ing. The basic idea of batch normalization is to perform
whitening on inputs of all layers in sequence. Let’s consider
a feature vector x = (x(1) . . . x(d)) ∈ X of d-dimension,
where X is whole layer input set. Normalizing x mathe-
matically is

Cov[x] = EX [xxT]− EX [x]EX [x]T

x̂ =
x− EX [x]

Cov[x]−1/2
(35)

Calculating covariance matrix Cov[x] and its square root
and inverse with all layer inputs over whole training set is
too costly to perform in practice. Ioffe and Szegedy make
two simplifications to make it feasible. Firstly, they assume
that each dimension of feature vector is independent, and
thus they can normalize each feature dimension individu-
ally. This avoids computing covariance matrix completely
since they only have to make each scalar value of a sin-
gle dimension have zero mean and unit variance. Secondly,
they estimate mean and variance over a mini-batch instead
of the whole training set. Now the normalization procedure
simplifies to

Var[x(k)] = EB[(x(k))2]− (EB[x(k)])2

x̂(k) =
x(k) − EB[x(k)]√

Var[x(k)]
for k = 1 . . . d

(36)

where B = x1...m is mini-batch. In practice, EB[x] and
Var[x] are estimated by

µB =
1

m

m∑
i=1

xi

σ2
B =

1

m

m∑
i=1

(xi − µB)2
(37)

Furthermore, another linear transformation is added to nor-
malized inputs to enhance representation power

y = ηx̂+ β (38)

12

where η and β are learnable parameters.
Ioffe and Szegedy [26] call the normalization step Batch

Normalizing Transform, or BN transform for short. BN
transform can be viewed as adding a normalization layer
to inputs and feeding the normalized inputs x̂ to a linear ac-
tivated sub-network. Introducing BN transform has the fol-
lowing benefits. A high learning rate will increase the scale
of parameters and may lead to either exploding or vanish-
ing error signals [25]. By using BN transform, the scale of
parameters have no effect on back-propagation, and larger
weights get smaller gradients, both lead to stable update of
model parameters. Moreover, as a side effect of BN trans-
form, a training instance is affected by other instances in
same mini-batch and thus no longer produces deterministic
effect on update of the network. This increases the diversity
of training data and reduces the risk of overfitting, and as a
find in experiment, reduces the need of using dropout [26].

Ioffe and Szegedy applied BN transform on GoogLeNet
and trained three versions to compare with original
GoogLeNet on ILSVRC 2014 dataset: BN-Baseline, BN-x5
and BN-x30. BN-Baseline simply inserts BN transform be-
fore each activation layer of GoogLeNet; BN-x5 increases
learning rate by 5 times upon BN-Baseline, and BN-x30 in-
creases learning rate by 30 times upon BN-Baseline. Their
experiment results show that BN-Baseline could match the
original GoogLeNet performance in accuracy (72.7%) with
only half number of training steps. BN-x5 achieves a better
accuracy (73.0%) with 14 times fewer steps, while BN-x30
achieves the best accuracy (74.8%) with 5 times fewer steps.
They also trained a 6 BN-x30 GoogLeNet ensemble and
made classification by the average class probabilities. Their
ensemble network achieves the lowest top-5 error (4.9%)
among all reported results [26] .

6. CNN Features
Features extracted from CNN layers have become pre-

ferred generic descriptors to represent images [46, 53]. The
convenience and effectiveness of obtaining deep image fea-
tures with deep learning package like Caffe [28] has made
deep features even more popular. A commonly accepted
practice of obtaining good task specific deep features is to
pre-training CNN on large-scale dataset and fine-tune with
relatively small task dataset . In this section, we will review
experiment results that have proven the distinctiveness of
deep features obtained with CNNs.

Image feature, or image descriptor, is a low-dimensional
vector used to represent image in a compressed form. It
is not a new concept at all. Before thrive of deep learn-
ing in computer vision, many types of image features
have been developed for specific tasks or general purpose.
SIFT [37], GIST [41], HOG [11] and Bag-of-Words fea-
tures are among those popular ones. In tasks such as two-
view geometry and 3D-reconstruction when strong geomet-

ric constraints exist, SIFT features are incomparable in lo-
cating exact points. This is because SIFT features are highly
optimized and engineered vectors in pixel grained level. But
for tasks such as object recognition, image classification
and instance retrieval, when course-grained generalizations
are needed, CNN deep features have its own advantage over
SIFT, GIST, HOG and Bag-of-Words features. Girshick et
al. [21] gave an explanation why deep features could be bet-
ter than shallow features in perspective of human recogni-
tion:

”SIFT and HOG features are blockwise orien-
tation hisograms, a representation we could as-
sociate roughly with complex celss in V1, the
first cortical area in the primate visual pathway.
But we also know that recognition occurs sev-
eral stages downstream, which suggests that there
might be hierarchical, multi-stage processes for
computing features that are even more informa-
tive for visual recognition”.

Razavian et al. [46] have conducted an experiment which
compares the performance of using different image features
to classification tasks. Here we briefly reviewed their work
and results. CNN model The CNN model used by Raza-
vian et al. is named OverFeat [50], which follows ConvNet
with some small modifications like larger feature maps and
smaller strides. OverFeat was pre-trained for classification
task on data set of ImageNet [12] ILSVRC 2013. Here is the
outline of the new classification tasks we want to perform.
Datasets Two recognition datasets are used to compare deep
features and traditional ones: Pascal VOC 2007 [18] for ob-
ject classification and MIT-67 indoor scenes [45] for scene
recognition. Pascal VOC 2007 contains about 10000 im-
ages of 20 classes. MIT-67 contains 15620 images of 67
indoor scene classes. Features and Classifiers The deep
features are 4096-dimensional vectors extracted from last
fully-connected layer of OverFeat, which represent the most
distinctive information learned by CNN. The corresponding
classifier was simply one-against-all linear SVMs (CNN-
SVM), Baseline classifiers were GHM [9], AGS [15] and
NUS [54]. GHM learns bag-of-words features of images.
AGS learns features from subcategories by clustering im-
ages. NUS learns a codebook for SIFT, HOG and LBP
descriptors from images. Experiment Results On Pascal
VOC 2007 dataset, CNN-SVM, which gains benefits of us-
ing deep features, has better average precisions on 10 out
of 20 classes. Razavian et al. [46] also compared the aver-
age precisions achieved by using different OverFeat CNN
layer features as deep representations of images to train
SVMs. The result is shown in Fig 9. Obviously the highest
level deep feature, which is the last fully-connected layer of
OverFeat, produces the best generalizations of images for
classification tasks. On MIT-67 dataset, CNN-SVM out-

13

Figure 9: Mean image classification average precision on
Pascal VOC 2007 classes [46] . The level indicates which
layer of OverFeat CNN features are used.

performed most highly optimized methods for this particu-
lar dataset, like MLrep [14] and IFV [29]. Zeiler and Fer-
gus have conducted similar experiment on Caltech-101 [19]
and Caltech-256 [23] datasets. They keep layers 1-7 of
ImageNet-trained ConvNet fixed and train a new softmax
classifier on top using Caltech dataset. This is equivalent
to extracting image features by ConvNet and training an-
other linear classifier separately. They find on both datasets
their deep features significantly outperform previously best
reported result [65].

Discussion CNN features, as a continuous distributed
representation of images, has been proved to surpass tradi-
tional hand-selected interpretable features such as HOG and
SIFT in classification and recognition tasks. It is still hard to
interpret such a large-dimensional deep feature which obvi-
ous limits theoretical analysis of its high abstraction power.

7. Motion Features

We now discuss a successful application of image fea-
tures on classification of motions in videos. Video is a tem-
poral sequence of images. Video is frame sequence is gen-
erally described by representation of certain visual words,
such as bag-of-words representation of histogram of optical
flows. Ryoo et al. [48] introduce a new feature represen-
tation called pooled time series (PoT) to describe motion
information in first-person video with fixed-length motion
features. PoT representation of motion videos is formed
by pooling per-frame image features in a set of temporal
windows and concatenating them together. They compared
different per-frame feature descriptors: histogram of optical
flows (HOF) [8], motion boundary histogram (MBH) [61],
CNN and Overfeat deep features, as well as three feature

representations: Bag-of-Words (BoW), Improved Fisher
Vector (IFV) [42] and PoT.

The pipeline of generating PoT representation is briefly
discussed here. At first image descriptors mentioned above
are extracted from each video frame to form a sequence
of n-dimensional vectors. Then PoT keeps track of value
changes of each dimension over time. Two questions need
to be addresses at this step: how can we know the time
interval of a certain motion, and how do we record value
changes. Their solution to first question is, a set of temporal
filters is applied to each time series to capture information
in a certain time segment. Their solution to second question
is to perform pooling operations. Several types of pooling
operations are defined: max, sum, count or sum of gradient
changes. Finally, pooling results are concatenated to form
final representation of videos. By following this pipeline,
PoT converts video frames to a single finite-dimensional
vector as input to classifiers for motion classification task.

Suppose there are m video frames {V t}mt=1, each has
n dimensions; k temporal filters, each covers a certain
time window {[tsu, teu]}ku=1 to form a temporal pyramid [10]
in order to capture diverse temporal structures. Multiple
pooling operators are applied to each filter and results are
concatenated to form the final PoT feature representation
x = [x

opj

i [tsu, t
e
u]], each element is interpreted as applying

jth pooling operator to the uth time window of ith compo-
nent of image frame descriptor. Finally, a SVM classifier is
trained with PoT features to perform classification task. The
design of PoT features brings several benefits of recogniz-
ing actions. By pooling from a pyramid of temporal filters,
PoT can capture either short-term or long-term motions, and
enhance representing power for high-level actions. More-
over, by using various pooling operators, diverse patterns of
actions can be captured.

One particular interesting work of [48] is that multiple
pooling operators are used to apply on temporal filters. Tra-
ditional max pooling and sum pooling operators (Σ) select
the maximum value or sum over all values of a particular
dimension of per-frame image feature vector over tempo-
ral window of this filter. Another two new pooling opera-
tors (∆1 and ∆2) in [48] either counts the number of pos-
itive and negative gradient changes of values within tem-
poral window or sums the values. These two new operators
capture more information of changes of each feature dimen-
sion during time interval. Their experiment shows that best
classification performance is achieved by PoT representa-
tion with sum, Σ and either ∆1 or ∆2 operators applied on
temporal pyramid of filters.

Experiment result shows, by using any type image fea-
tures, PoT representations outperforms BoW and IFV in
classification accuracy. By using high-dimensional deep
learning features, the superior of PoT over BoW and HOF
is more significant. This is because BoW and HOF clus-

14

Figure 10: Image sequence of cycling.

ter similar deep feature vectors into single visual word and
ignore small changes, but PoT captures these changes by
temporal pooling. PoT which uses a pyramid of temporal
filters and concatenates all pooled vectors outperform the
one which considers only entire time interval and pools over
it. In contrast, BoW and IVF do not get benefits by using
pyramid of temporal filters for the same reason above.

Discussion PoT representation captures differences of
feature vectors of adjacent video frames with high sample
rate. Another interesting task is so-called “sparse motion”
task coined by author of this survey. The task is to under-
stand images of a certain action captured a wearable cam-
era. Since the wearable camera typically takes images at
a much lower rate, say 30s per frame, those images form a
“sparse motion” which means only very few moments of the
motion could be captured. Optical flow is hard to capture,
or is highly unreliable because there is hardly any temporal
connections between adjacent frames. For instance, the low
level gradient changes of two adjacent frames can be useful
for normal videos as we see in PoT, but can be meaningless
for sparsely taken photo sequence. However, there are cer-
tainly motion-specific patterns can be captured in “sparse
motion” image sequence. Figure 10 shows the cycling mo-
tion images. The order of each image in sequence is almost
lost due to coarse sample rate. Order information is im-
portant to gradient pooling of PoT, but not for sum or max
pooling. It is in the hope that by max or sum pooling of
feature vectors from sparsely taken images, most distinc-
tive patterns of this action are preserved while background
or non-repeatable patterns of each image are suppressed.

8. CNN Deconvolution

Understanding feature maps in higher layers of a CNN is
a difficult task. Feature maps at higher layers are pooled and
rectified, and are of combinations of lower feature maps.
The high abstraction of feature maps makes it hard to build
a connection between feature maps and original images.
Zeiler and Fergus propose a visualization method which
discovers the input stimuli that excite individual feature
maps [65]. The method is called multi-layered deconvo-

Figure 11: Structure of DeCNN taken from [65]. The right
part is part of a CNN, and each layer is attached with a
DeCNN layer at left.

lutional network, or deconvnet, but we will use the name
DeCNN in accordance with our naming convention. The
idea of DeCNN is to back-project feature activities to in-
put image plane and show what input pattern actually gives
rise to such activities. The name DeCNN comes from the
fact that CNN maps input images to features while DeCNN
does the opposite. In Zeiler’s 2010 paper [66], a deconvnet
was a unsupervised training model and its main task was to
build mid-level image representations. But we only discuss
the DeCNN used for visualization purpose which has no
training step. A DeCNN is layer-wise attached to a CNN,
sharing CNN’s convolution kernels and pooling masks. Fig-
ure 11 is a good illustration of structure of DeCNN.

The DeCNN reconstructs feature maps in opposite direc-
tion. To examine a particular feature map, all other feature
maps at same layer are set to zero and only pass this feature
map as input to DeCNN layers attached. Unpooling layer
follows what we discussed in Section 4.1: it inverts pooling
layer by placing reconstructions from layer above on posi-
tions of local maxima during forward step. ReLU layer is
simply appended after unpooling layer to pass through only
positive reconstructions. Deconvolution layer inverts con-
volutional layer by transposing (flipping vertically and hor-
izontally) convolutional kernels as deconvolutional kernels
and applies on rectified feature maps. The logic of using
transposed kernel is that in signal processing realm, a Her-
mitian or conjugate transpose of a filter is called a “matched
filter”. A matched filter is “optimal linear filter for maxi-
mizing the signal to noise ratio (SNR) in the presence of ad-
ditive stochastic noise” [3]. In another word, the transposed
filter is used to approximately reconstruct feature maps be-
fore convolution.

Zeiler and Fergus used DeCNN to visualize the feature
activations upon ImageNet validation set. After training
step is done, they randomly chose a subset of feature maps

15

at each layer from 2 to 5, and selected top 9 activations
of each feature map when validation set of images are for-
warded into CNN. These 9 activations of each feature map
are projected back to pixel space to produce the reconstruc-
tions. In Figure 12, 9 reconstructions of each selected fea-
ture map at each layer from 2 to 5 are shown. Figure 12
shows several interesting facts. Each feature map is strongly
responding to one pattern, as its reconstructions of 9 top ac-
tivations share this similar pattern. Lower layers could cap-
ture corners, edges and simple shapes like circles, as shown
in Figure 12(a). Middle layers could capture greater trans-
form invariance, e.g., Row 1 Column 1 of layer 3 captures
grid patterns, as shown in Figure 12(b). Higher layers could
capture very discriminative features of images, e.g., dog
faces and bird legs at layer 4, and dog eyes, ears, wheels
at layer 5, as shown in Figure 12(c).

One success application of visualization technique is to
help improve CNN architectures. In Figure 13, the left im-
age shows visualization result of ConvNet 2nd layer fea-
tures. The aliasing artifacts indicate the too large convolu-
tion kernel size 11 and the too large stride 4 [65]. Zeiler
suggested decreasing kernel size to 7 and stride to 2, and
produced more natural feature maps as shown in right im-
age. The top-5 classification performance is also reduced
by 1.7%.

9. Region Proposal
Krizhevsky et al. [32] demonstrated the advance of CNN

on image classification tasks, and later, the power of CNN
has been generalized to object detection tasks. We will dis-
cuss the state of the art objection detection method which
is called Regions with CNN features (R-CNN) proposed by
Girshick et al. [21] in 2014. R-CNN decomposes object
detection to two main steps. In first step, low-level image
information such as color and texture are used to generate
object location proposals without incorporating any cate-
gory concept. In second step, CNN classifiers are used
to identify object categories at locations proposed in first
step. “Such a two stage approach leverages the accuracy
of bounding box segmentation with low-level cues, as well
as the highly powerful classification power of CNNs” [55].
The pipeline of R-CNN is shown in Fig 14. In first step,
the method used to generate category-agnostic region pro-
posals is selective search [57, 62], which generates about
2000 region proposals for each image. Each proposed re-
gion is then cropped out of original image and warped into
227× 227 image patch which is fit for CNN input, and fed
forward through a standard CNN. The output of last fully-
connected layers are extracted out as region features. At
training stage, training image regions together with their
known category labels are used to supervisely train SVM
classifiers for each category. Having these trained category-
specific SVM classifiers, at testing stage, regions features

extracted from testing images are scored and classified to
most probable categories. Finally, a greedy non-maximum
method suppresses non-maximum regions for each class in-
dependently. R-CNN is very scalable with growth of cat-
egory number. The only category-related computation dur-
ing testing time is the matrix product of region features with
SVM weight matrices, which grows linearly with category
numberN . R-CNN is a successful application of CNN deep
features which is used on image location task.

The CNN used to generate region features is pre-trained
on ILSVRC 2012 dataset, followed by fine-tuning on PAS-
CAL data set. This is critical because PASCAL dataset has
not enough labeled objects and thus not capable of training
a deep CNN from scratch. Though ILSVRC 2012 dataset
only includes image category labels but not specific to ob-
ject level, pre-training CNN with ILSVRC dataset is viewed
as image-level annotation with entire image as an object
(bounding box is whole image). This pre-trained CNN
has an ILSVRC ImageNet-specific 1000-way classification
layer. At fine-tuning stage, this classification layer is re-
placed with task-specific classification layer, e.g., a 20-way
classification layer corresponding to 20 classes for PAS-
CAL dataset. The idea of pre-training a general CNN and
fine-tuning on task dataset now becomes a standard way
of training a domain-specific CNN if task dataset is in-
sufficient. Caffe deep learning package [28] makes this
even more simpler by providing parameters and structures
of pre-trained general-purpose CNNs such as ConvNet and
GoogLeNet, and thus saves the effort of pre-training step.

Experiment results on ILSVRC 2013 detection dataset
showed that R-CNN has significant better mean average
precision (mAP) than second best result produced by Over-
Feat [50]. The authors also compared the mAP achieved by
R-CNN with fine-tuned CNN and without fine-tuned CNN.
Fine-tuning increases mAP by 8% on PASCAL VOC 2007
dataset. In addition, it is reported that the choice of CNN ar-
chitecture results in a large difference in performance. The
authors compared the results of two R-CNNs with ConvNet
and VGGNet as their basic CNN respectively. VGGNet has
a much deeper structure than ConvNet, as shown in Table 1.
R-CNN with VGGNet structure outperforms R-CNN with
ConvNet structure by 7.5%, at the cost of about 7 times
longer time in forward propagating.

10. Neural Networks in Natural Language Pro-
cessing

In this section, we will discuss recent progress in ap-
plying deep neural networks to natural language processing
(NLP) realm. This section is related to this survey of CNNs
for two reasons: both DNNs in NLP and CNNs in Com-
puter Vision share similar thoughts and design in structure,
and many efforts have been made to combine deep neural
networks to model joint distribution of image and text and

16

perform classification or prediction tasks. In Section 10.1
we will introduce two types of neural networks as word en-
coders which produce word features as CNNs produce im-
age features. In Section 10.2 we will introduce RNNs and
LSTMs as sentence encoders which produce sentence fea-
tures. In Section 10.3 we will discuss recent work in image-
sentence prediction by combining deep features of images
and sentences.

10.1. Word Representation

In Section 6, we have shown that CNNs can produce rich
representation of an image with a fixed-length feature vec-
tor, and this deep feature vector has been applied success-
fully to many computer vision tasks. CNNs are thus viewed
as an effective image encoder. In Natural Language Pro-
cessing realm, several specially structured neural networks
have been developed recently as encoders for words, such
as CBOW and Skig-gram [39, 38]. They have also shown
deep network’s power in representing words’ syntactic and
semantic relationships. Both CBOW and Skig-gram use
neural network as basic model of training a word encoder.

CBOW uses a word’s context of D future words and D
history words as input, and trains a neural network to pre-
dict current word which is in middle. The hidden layer of
a neural network is replaced with a projection layer, which
projects input words into vectors and averages them to con-
struct the middle word vector. A log-linear classifier is
built upon middle word vector, and error signals are back-
propagated to tune the weights of projection layer. CBOW
is similar to bag-of-words model in that the order of words
has no influence of projection. However, CBOW uses con-
tinuous distributed representation of the context, and shows
to contain more rich representations of a word. Skip-gram
is different from CBOW that it uses current word as input to
projection layer and predicts C words before and C words
after current word. A log-linear classifier is built upon pro-
jection layer to train projection weights. In Skip-gram, the
order of words has influence on word representation. The
motivation of skip-gram is based on the assumption that
words with similar contexts are likely to be both semanti-
cally and syntactically similar. The similarity of two words
is measured by inner product of word vectors. Later, [67]
extends this idea to form sentence vectors and measure sim-
ilarity of two sentences.

Mikolov et al. [38] reported that CBOW achieves the
best performance on syntactic questions, slightly better than
Skip-gram; Skip-gram achieves the best performance on se-
mantic questions, and significant better than all the other
models. Some of the semantic and syntactic questions are
shown in Figure 15.

The common ideas shared between deep image repre-
sentation and deep word representation are that both incor-
porate contextual information to represent a unit in a con-

text, as pixel in an image or word in a sentence, and both
produce continuous distributed representations which have
been shown their richness.

10.2. Sentence Representation

Let’s consider a recent interesting task in NLP and Com-
puter Vision, which asks to generate full sentence descrip-
tions for images automatically. There are two problems
need to be solved first. The first question is how do we
use image information and map image and sentence into
a common space. The second question is what is the lan-
guage model of generating a sentence. We will consider a
class of data-driven methods which are proposed recently.
In 2014, the topic of generating captions for images is the
main theme of aligning texts with images [60, 30, 31]. In
2015, more works have been focusing on generating de-
scriptions for short videos clips [44, 59, 58], and aligning
book paragraphs with movie shots [67].

Let’s address the first question as “can we map image
and sentence into a same space by using image representa-
tions and sentence representations”. As we have discussed
in Section 6 and Section 10.1, images and words can be
represented as feature vectors of fixed length. A sentence
representation can be generated by stacking word vectors
together. A simple linear transformation upon image and
word feature vectors can easily align transformed features
to a common space. We could use word vectors of CBOW
or Skip-gram pre-trained on a large corpus, but several rea-
sons lead to finding a better solution of modeling sentence
representation: words are not independent in sentences, so
simply stacking word vectors is not enough; we want to
use full context of a word in the sentence as well as the
order (time) information; we want to predict a complete
sentence, so the ability to predict an end token is essential.
Let’s address the second question as “by using a date-driven
method, is there a language model that could produce con-
ditional probability distribution over whole dictionary for
next word, based on all previously observed words and the
image”. Recently, a rediscovery of Recurrent Neural Net-
wors (RNN) [16, 22], and its modified version Long Short-
Term Memory (LSTM) [25, 22] have shown that they are
good candidates for both tasks.

Let’s denote an input sentence as a sequence of words
x = (x1, x2, . . . , xt, . . .), and the hidden state of a RNN
at time t as ht. The hidden state is updated each time a
new word is observed: ht = LSTM(ht−1, xt). In RNNs
or LSTMs, hidden units are employed to store hidden states
and develop internal representations for the patterns of in-
put sequences [16]. Hidden units not only preserve previ-
ous states, but also receive external input observed at cur-
rent time. This design purpose determines that hidden units
must be recurrently connected with themselves, as shown in
Figure 16 taken from [22].

17

Recent works prefer LSTM rather than RNN, for the
reason RNN may suffer from vanishing or exploding gra-
dients [25], which leads to weights oscillating or stop-
ping learning. This is more likely to happen during back-
propagation of a long neural network, for the intuition that
accumulated error signal passed through a long sequence
path is exponentially scaled at each layer, and tends to blow
up or diminish to zero. LSTM minimizes the negative im-
pact of degrading gradient effects by a specially designed
hidden unit, which is called memory block. Memory block
contains three gates and a memory cell, as shown in Fig-
ure 17. Memory cell c is used to remember important
knowledge observed up to current step. Memory block can
choose to read or not read current input, remember or forget
current cell value, and whether or not output the new cell
value. These behaviors of memory block are controlled by
three types of gates: input gate i, forget gate f , and out-
put gate o. During back-propagation, output gate controls
error signals flow into memory cell and thus has to learn
which errors should influence memory cell. Accordingly,
input gate has to learn when to release errors and back-
propagate. Only error signal arriving at memory cell gets
back-propagated by proper scaling; error signals of gates’
weights are not back-propagated. This achieves a so-called
constant error flow and avoids vanishing or exploding gra-
dients [25].

10.3. Image-Sentence Alignment and Prediction

Having introduced RNNs and LSTMs, we now describe
the whole process of sentence prediction. Deep image fea-
ture vector for input image is firstly extracted out with a
CNN model. In training stage, this image feature vector is
the initial input to LSTM followed by words in training sen-
tence. We can think LSTM in its unrolled form, as shown
in Figure 18 taken from [60]. In Figure 18, a memory block
is created for image feature vector and each word in train-
ing sentence in sequence. All such memory blocks share
the same set of parameters that are updated at each time
step. Output of LSTM memory block at each time step is
interpreted by softmax layer as probability distribution of
words in a pre-built dictionary. During back-propagation,
error signal from softmax loss of word prediction at this
step, as well as error signal back-propagated from later steps
are combined together to update parameters of LSTM mem-
ory block. In testing stage, image feature vector is the only
external input to a pre-trained LSTM. A forward pass of
LSTM will generate predicted words in sequence to com-
plete a sentence prediction. The termination condition is
that LSTM predicts a period or a special stopping word,
which is also appended to training data to signal the end of
a sentence.

11. Conclusion

CNN, as well as general neural networks, experience ups
and downs in different stages of history. CNN is obviously
at its thrive today, and it redefines many of state of the arts
methods in computer vision. We are lucky or unlucky in this
rapidly changing time where numerous innovative ideas are
created as fast as some of them are forgotten. This is an
exciting era.

References
[1] Convolutional neural networks (lenet). http:

//deeplearning.net/tutorial/lenet.html.
Accessed: 2015-08-11.

[2] Cs231n convolutional neural networks for visual recog-
nition. http://http://cs231n.github.io/
convolutional-networks/#overview. Accessed:
2015-08-12.

[3] Matched filter — Wikipedia, the free encyclopedia. https:
//en.wikipedia.org/wiki/Matched_filter.
Accessed: 2015-07-29.

[4] C. M. Bishop. Pattern recognition and machine learning.
springer, 2006.

[5] J. Bouvrie. Notes on convolutional neural networks. 2006.
[6] R. H. Byrd, S. Hansen, J. Nocedal, and Y. Singer. A stochas-

tic quasi-newton method for large-scale optimization. arXiv
preprint arXiv:1401.7020, 2014.

[7] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.
Return of the devil in the details: Delving deep into convo-
lutional nets. arXiv preprint arXiv:1405.3531, 2014.

[8] R. Chaudhry, A. Ravichandran, G. Hager, and R. Vidal. His-
tograms of oriented optical flow and binet-cauchy kernels on
nonlinear dynamical systems for the recognition of human
actions. In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pages 1932–1939. IEEE,
2009.

[9] Q. Chen, Z. Song, Y. Hua, Z. Huang, and S. Yan. Hierarchi-
cal matching with side information for image classification.
In Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, pages 3426–3433. IEEE, 2012.

[10] J. Choi, W. J. Jeon, and S.-C. Lee. Spatio-temporal pyra-
mid matching for sports videos. In Proceedings of the 1st
ACM international conference on Multimedia information
retrieval, pages 291–297. ACM, 2008.

[11] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In Computer Vision and Pattern Recogni-
tion, 2005. CVPR 2005. IEEE Computer Society Conference
on, volume 1, pages 886–893. IEEE, 2005.

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database.
In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 248–255. IEEE, 2009.

[13] M. Denil, B. Shakibi, L. Dinh, N. de Freitas, et al. Predicting
parameters in deep learning. In Advances in Neural Informa-
tion Processing Systems, pages 2148–2156, 2013.

18

http://deeplearning.net/tutorial/lenet.html
http://deeplearning.net/tutorial/lenet.html
http://http://cs231n.github.io/convolutional-networks/#overview
http://http://cs231n.github.io/convolutional-networks/#overview
https://en.wikipedia.org/wiki/Matched_filter
https://en.wikipedia.org/wiki/Matched_filter

[14] C. Doersch, A. Gupta, and A. A. Efros. Mid-level visual ele-
ment discovery as discriminative mode seeking. In Advances
in Neural Information Processing Systems, pages 494–502,
2013.

[15] J. Dong, W. Xia, Q. Chen, J. Feng, Z. Huang, and S. Yan.
Subcategory-aware object classification. In Computer Vision
and Pattern Recognition (CVPR), 2013 IEEE Conference on,
pages 827–834. IEEE, 2013.

[16] J. L. Elman. Finding structure in time. Cognitive science,
14(2):179–211, 1990.

[17] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable
object detection using deep neural networks. In Computer
Vision and Pattern Recognition (CVPR), 2014 IEEE Confer-
ence on, pages 2155–2162. IEEE, 2014.

[18] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[19] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative
visual models from few training examples: An incremental
bayesian approach tested on 101 object categories. Computer
Vision and Image Understanding, 106(1):59–70, 2007.

[20] R. Girshick. Fast r-cnn. In International Conference on Com-
puter Vision (ICCV), 2015.

[21] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. In Computer Vision and Pattern Recognition
(CVPR), 2014 IEEE Conference on, pages 580–587. IEEE,
2014.

[22] A. Graves. Generating sequences with recurrent neural net-
works. arXiv preprint arXiv:1308.0850, 2013.

[23] G. Griffin, A. Holub, and P. Perona. Caltech-256 object cat-
egory dataset. 2007.

[24] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Predic-
tion, Second Edition. Springer Series in Statistics. Springer,
2009.

[25] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[26] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

[27] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun.
What is the best multi-stage architecture for object recog-
nition? In Computer Vision, 2009 IEEE 12th International
Conference on, pages 2146–2153. IEEE, 2009.

[28] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[29] M. Juneja, A. Vedaldi, C. Jawahar, and A. Zisserman. Blocks
that shout: Distinctive parts for scene classification. In Com-
puter Vision and Pattern Recognition (CVPR), 2013 IEEE
Conference on, pages 923–930. IEEE, 2013.

[30] A. Karpathy and L. Fei-Fei. Deep visual-semantic align-
ments for generating image descriptions. arXiv preprint
arXiv:1412.2306, 2014.

[31] A. Karpathy, A. Joulin, and F. F. Li. Deep fragment embed-
dings for bidirectional image sentence mapping. In Advances
in neural information processing systems, pages 1889–1897,
2014.

[32] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012.

[33] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Backpropagation
applied to handwritten zip code recognition. Neural compu-
tation, 1(4):541–551, 1989.

[34] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

[35] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky.
Sparse convolutional neural networks. June 2015.

[36] J. Long, E. Shelhamer, and T. Darrell. Fully convolu-
tional networks for semantic segmentation. arXiv preprint
arXiv:1411.4038, 2014.

[37] D. G. Lowe. Distinctive image features from scale-
invariant keypoints. International journal of computer vi-
sion, 60(2):91–110, 2004.

[38] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient
estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781, 2013.

[39] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and phrases
and their compositionality. In Advances in neural informa-
tion processing systems, pages 3111–3119, 2013.

[40] V. Nair and G. E. Hinton. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th
International Conference on Machine Learning (ICML-10),
pages 807–814, 2010.

[41] A. Oliva and A. Torralba. Modeling the shape of the scene: A
holistic representation of the spatial envelope. International
journal of computer vision, 42(3):145–175, 2001.

[42] F. Perronnin, J. Sánchez, and T. Mensink. Improving the
fisher kernel for large-scale image classification. In Com-
puter Vision–ECCV 2010, pages 143–156. Springer, 2010.

[43] K. B. Petersen et al. The matrix cookbook.
[44] H. Pirsiavash, C. Vondrick, and A. Torralba. Inferring the

why in images. arXiv preprint arXiv:1406.5472, 2014.
[45] A. Quattoni and A. Torralba. Recognizing indoor scenes.

In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 413–420. IEEE, 2009.

[46] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson.
Cnn features off-the-shelf: an astounding baseline for recog-
nition. In Computer Vision and Pattern Recognition Work-
shops (CVPRW), 2014 IEEE Conference on, pages 512–519.
IEEE, 2014.

[47] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
Advances in Neural Information Processing Systems, pages
91–99, 2015.

[48] M. S. Ryoo, B. Rothrock, and L. Matthies. Pooled
motion features for first-person videos. arXiv preprint
arXiv:1412.6505, 2014.

19

[49] P. Sermanet, S. Chintala, and Y. LeCun. Convolutional neu-
ral networks applied to house numbers digit classification. In
Pattern Recognition (ICPR), 2012 21st International Confer-
ence on, pages 3288–3291. IEEE, 2012.

[50] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,
and Y. LeCun. Overfeat: Integrated recognition, localization
and detection using convolutional networks. arXiv preprint
arXiv:1312.6229, 2013.

[51] P. Sermanet and Y. LeCun. Traffic sign recognition with
multi-scale convolutional networks. In Neural Networks
(IJCNN), The 2011 International Joint Conference on, pages
2809–2813. IEEE, 2011.

[52] H. Shimodaira. Improving predictive inference under covari-
ate shift by weighting the log-likelihood function. Journal of
statistical planning and inference, 90(2):227–244, 2000.

[53] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[54] Z. Song, Q. Chen, Z. Huang, Y. Hua, and S. Yan. Contextual-
izing object detection and classification. In Computer Vision
and Pattern Recognition (CVPR), 2011 IEEE Conference on,
pages 1585–1592. IEEE, 2011.

[55] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich. Going deeper with convolutions. arXiv preprint
arXiv:1409.4842, 2014.

[56] C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks
for object detection. In Advances in Neural Information Pro-
cessing Systems, pages 2553–2561, 2013.

[57] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W.
Smeulders. Selective search for object recognition. Interna-
tional journal of computer vision, 104(2):154–171, 2013.

[58] S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney,
T. Darrell, and K. Saenko. Sequence to sequence–video to
text. arXiv preprint arXiv:1505.00487, 2015.

[59] S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach,
R. Mooney, and K. Saenko. Translating videos to natural lan-
guage using deep recurrent neural networks. arXiv preprint
arXiv:1412.4729, 2014.

[60] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show
and tell: A neural image caption generator. arXiv preprint
arXiv:1411.4555, 2014.

[61] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Dense tra-
jectories and motion boundary descriptors for action recog-
nition. International journal of computer vision, 103(1):60–
79, 2013.

[62] X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic
object detection. In Computer Vision (ICCV), 2013 IEEE
International Conference on, pages 17–24. IEEE, 2013.

[63] S. J. Wright. Numerical optimization, volume 2.
[64] W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent neu-

ral network regularization. arXiv preprint arXiv:1409.2329,
2014.

[65] M. D. Zeiler and R. Fergus. Visualizing and understanding
convolutional networks. In Computer Vision–ECCV 2014,
pages 818–833. Springer, 2014.

[66] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus.
Deconvolutional networks. In Computer Vision and Pat-
tern Recognition (CVPR), 2010 IEEE Conference on, pages
2528–2535. IEEE, 2010.

[67] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun,
A. Torralba, and S. Fidler. Aligning books and movies: To-
wards story-like visual explanations by watching movies and
reading books. arXiv preprint arXiv:1506.06724, 2015.

20

(a) Layer 2 top 9 activations of feature maps and corresponding image patches

(b) Layer 3 top 9 activations of feature maps and corresponding image patches

(c) Layer 4,5 top 9 activations of feature maps and corresponding image patches

Figure 12: Visualization of feature maps projected back in pixel space as shown in [65]. For a subset of feature maps at each
layer from 2 to 5, top 9 activations of each selected feature maps on validation set are projected back to pixel space using
DeCNN. Reconstructed feature maps and their corresponding image patches are shown.

21

Figure 13: Visualization of 2nd layer features from
Krizhevsky’s ConvNet [32] and from Zeiler’s suggested
CNN architecture [65].

Figure 14: Object detection procedures of R-CNN taken
from [21].

Figure 15: Some semantic and syntactic questions used
by Mikolov et al. [38] to test CBOW and Skip-gram
word features. A semantic question is like ”what is the
city has the relationship with Norway as Athens has the
same relationship with Greece”. Their method of an-
swering this question with word vectors is to compute
vector X = vector(“Norway”) − vector(“Greece”) +
vector(“Athens”). Then they find the word w with closest
word vector X ′ with X in vector space measured by cosine
distance as the answer to the question.

Figure 16: Demonstration of RNN structure taken
from [22]. Hidden units receive internal inputs from pre-
vious hidden states and external input observed at current
time. In horizontal direction, hidden units are unrolled with
time; in vertical direction, three layers of hidden units are
stacked in a hierarchical way.

Figure 17: Demonstration of LSTM memory block taken
from [60]. Memory cell c is at the heart of the block. Three
gates control the data flow through memory cell. In word
prediction scenario, at training time, input at time t is from
output at t-1 and t-th ground truth word in training sentence;
at testing time, output at t-1 is the only input into memory
cell, and output at t is fed into softmax layer for word pre-
diction.

22

Figure 18: Demonstration of unrolled form of LSTM model
taken from [60]. The leftmost part is a CNN which gener-
ates deep feature vector for input image, which is fed into
LSTM block. Each LSTM block is created for image fea-
ture input and each word input. All LSTM blocks share
the same set of parameters, and they are shown to be re-
currently connected. Outputs are fed into softmax layer to
produce next word predictions. In back-propagation, error
signals are propagated from right to left, and are combined
with the new error signal generated at softmax layer at each
step.

23

