
 Current time series forecasting approaches face significant limitations due to rigid 
model architectures and static parameters.

 Standard Auto-Regressive (AR) models and Non-AutoRegressive (Non-AR) models’ 
reliance on static history and future windows creates challenges in capturing real-
world complexities such as non-stationary patterns, long-term dependencies, and 
evolving patterns. Additionally, these methods require retraining for every 
prediction horizon, making them impractical for industrial applications.

 To address these limitations, we introduce three innovative strategies: in-context 
learning for dynamic input adaptation over variable observations, extend-context 
learning to handle variable future horizons and patterns, and cross-context learning 
for effective domain transfer with minimal tuning. Our approaches enhance the 
adaptability and flexibility of forecasting methodology and seamlessly plug into 
existing forecasting backbones.

 Academic datasets include (1) ETTm2 Electricity Transformer dataset, 
(2) Electricity dataset, (3) Exchange dataset, (4) Traffic of California, (5) 
Weather, and (6) ILI disease data.

 Industrial datasets: (7) CEA-Carbon includes Chinese Carbon Emission 
Allowance daily data from four zones between 2015 and 2022 in China. 
(8) Crypto datasets. BTC (Bitcoin) and ETH (Ethereum) are widely 
traded crypto assets. (9) STAR-22 is sourced from China A -share on the 
Shanghai and Shenzhen Stock Exchanges, covering 4000 stocks from 
2022 to 2023.  (10) The US S&P500 index includes 5 hourly price-
related attributes, with seven timesteps recorded per trading day.

 Our Methods. We abbreviate our methods as CMA-{In/Ex/Cr}-{i/T} 
for three learning tasks In-context (In), Ex-context (Ex) and Cross-
context(Cr), with backbone models iTrans (denoted as i) or TimeXer 
(denoted as T). 

 Baselines. Autoformer(AF), iTransformer(iTrans) and TimeXer  are 
existing state-of-the-art time series predictors. The Diffusion-TS (DTS) 
is a recently proposed time-series generation technique. We also 
compare with a continual online learning framework FSNet and twov 
test-time adaptation (TTA) methods Tent and CoTTA. 

 We demonstrate that our CMA framework effectively captures 
underlying time series movement patterns, leading to improved predictions. 
 Code: https://github.com/FancyAI-SCNU/CMA_KDD_2025
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 We propose a unified framework to encompass our learning strategies, named 
Contextual Meta-Adaptation (CMA). CMA seamlessly integrates three elements: a 
capable generator model which can perform time series denoising, a joint context 
learning pipeline to adapt model weights to evolving contexts, an efficient model 
update strategy with meta-learning and test-time adaptation.

 Step-1: we design a diffusion adapter that embeds the timestep � and feeds it into 
the QKV projection along with time series patch tokens at each attention layer, 
allowing alternating prediction and stepwise denoising diffusion.

 Step-2: we develop a joint context learning pipeline called Con textual Meta-
Adaptation (CMA) procedure. As shown in Fig. 1, CMA alternates between two 
actions to generate a sequence that aligns with historical data while adapting models 
based on current patterns. 

 Step-3: we develop an efficient model update strategy using gradient-based meta 
learning for fine-tuning models over evolving patterns during the CMA procedure. 
This approach enables rapid parameter updates and facilitates testing-time 
adaptation to better align with test data. 
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 We show prediction examples across three contextual learning tasks. Fig. 
5(a) illustrates cyclic movement in the Traffic dataset, where CMA-In-T 
more accurately captures seasonality patterns through in-context learning 
with extended historical adaptation.

 Academic Results. Table 1 reports the MSE results on academic 
datasets. CMA-In-T achieves state-of-the-art performance across 
datasets and horizons. Compared to its backbone TimeXer, it reduces 
MSE by 7% (0.174 vs. 0.187), 6% (0.211 vs. 0.225), and 10% (0.270 vs. 
0.299) on F96/192/336, with larger improvements on extended horizons 
(e.g., 10% on F336). Similarly, CMA-In-i outperforms iTrans by 4% 
(0.193 vs. 0.200), 4% (0.238 vs. 0.247), and 9% (0.279 vs. 0.307) across 
the same horizons.

 Crypto Market Results. On Crypto Market. We report the MSE of each 
horizon in Table 2. Our methods adapt to 6 overlapping historical 
periods by extending the original history with 30 more preceding steps. 
Our CMA-In-T reduces MSE by 28% (2.28 vs. 3.17) for BTC compared 
to TimeXer. CMA-In-i outperforms iTrans with a 25% reduction in 
MSE. CMA-In-T and CMA-In-i outperform TTA baselines Tent and 
CoTTA by 23-32%. ETH has a similar trend.

 Stock Market Results. Table 3 reports results on China and US Stock 
Markets. CMA-In-T achieves the lowest average MSE (1.41), 2% lower 
than TimeXer (1.44) and over 33% better than other baselines. The 
CMA-In-i comes second with MSE (1.86), falling behind CMA-In-T but 
reducing iTrans (2.00) by a larger 7%. 

 Fig. 5(b) shows CMA-Ex-T 
has s tabi l ized predict ions 
a r o u n d  g r o u n d - t r u t h 
trajectories of BTC in ex-
c o n t e x t  l e a r n i n g , 
outperforming CoTTA and 
TimeXer  ( spec ia l ized  for 
F60/F90 horizons).

 Figs. 5(c) and (d) demonstrate 
c r o s s - c o n t e x t  l e a r n i n g 
s cena r io s .  I n  t he  C a r bon 
market (Shanghai to Hubei, 
S H - > H B ) ,  C M A - C r - T 
precisely identifies the upward 
t r e n d  a l i g n e d  w i t h 
observations.

 Compared to Time Series foundation models like Moirai (13.8M+) and 
TimesFM (17M+), our approach simplifies the architecture. Our 
diffusion adapter introduces only 0.52M additional parameters to the 
4.31M TimeXer backbone, with the LoRTA module reducing adaptation 
overhead to 0.05M (1%) during inference.

 We present the MSE results for Moirai in Table 6, using identical history 
lengths to our models (96 for ETTm2 and Weather, 36 for BTC). As the 
table shows, our approach substantially outperforms the zero-shot 
generalization of these foundation models. Specifically, we achieve a 
50–75 % reduction in MSE on ETTm2, a 10–30% reduction on Weather, 
and a 38–40% reduction on BTC relative to Moirai’s zero-shot 
performance.

 Ablation of learning with a longer history. We train an even stronger 
baseline, TimeXer-Long, on the same extended history length as CMA-
In-T , which includes 30 more steps than TimeXer. Similarly, we extend 
iTrans to iTrans-Long and compare with our CMA-In-i . 


