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Abstract—While advanced Large Language Models (LLMs)
exhibit considerable promise, their tendency to generate unreli-
able information poses significant challenges, particularly in high-
risk domains like healthcare. However, the advent of Retrieval-
Augmented Generation (RAG) offers a novel solution tailored for
the medical realm. This study further enhances retrieval accuracy
by introducing REMED, a specialized medical document re-
trieval framework designed to address the hallucination problem
prevalent in LLMs. The REMED framework integrates dataset
construction, an efficient embedding fine-tuning EM-FT model,
retrieval-augmented generation, and human evaluation of LLM
responses. The EM-FT model can end-to-end fine-tune the medi-
cal sentence representations in large pre-trained models through
an efficient embedding fine-tuning method, thereby enhancing the
performance of medical retrieval. We adopt contrastive learning
as the loss function to optimize the performance of the EM-FT
model, enabling it to accurately capture the similarity between
query and relevant documents. This approach not only improves
the retrieval accuracy of positively related contents but also
effectively reduces the matching with negatively related contents.
Compared to direct dense vector retrieval, fine-tuning query and
content vectors first and then performing dense retrieval tasks
significantly improved the performance. Through validation on
two datasets, we demonstrate that our EM-FT method improves
recall and precision on MMD by 3.2%-6.0% and on MPD by
14.4%-42.6% compared to using the embedding model directly
for retrieval. Furthermore, through human evaluation on the
PULSE-7Bv5 model, we further confirm the effectiveness of our
retrieval results in improving the quality of generated text.

Index Terms—Medical Document Retrieval, Medical Dataset,
Large Language Models, Contrastive Learning

I. INTRODUCTION

Despite the rapidly growing capabilities of large-scale lan-
guage models (LLMs) such as GPT-4 [1], there are concerns
about their tendency to generate unreliable information, re-
ferred to as “hallucinations” [2]. In critical domains such as
healthcare and law, where accuracy and reliability are critical,
even minor errors can have severe consequences, necessitating
extremely cautious information processing.

Retrieval-Augmented Generation (RAG) has recently
emerged as an effective approach to address hallucinations [3],
[4]. RAG combines pre-trained language models with re-
trieval systems, leveraging external databases to enhance per-
formance. In our study, we utilized self-collected datasets,
the Medical Menu Dataset (MMD) and the Medical Paper
Dataset (MPD), to integrate relevant information and improve
RAG’s performance. By incorporating access to large and
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Query: What are the indications for Orlistat capsules?

1. Phosphate oseltamivir - Drug 
Indications No data
2. Olmesartan medoxomil capsule -
Senico Digestive medicine 
Contraindications Patients with 
chronic malabsorption syndrome and 
cholestasis should avoid using this 
drug.

The indications of Orlistat capsules are
digestive system drugs, which are
mainly used for the treatment of obesity
and type 2 diabetes (Error).

The indications of Orlistat capsules are
for the treatment of obese or overweight
patients (body mass index ≥24). (Right)

M3e retrieval results: EM-FT retrieval results:

LLM Response: LLM Response:

1. Contraindications of Orlistat capsules (Benicar):
1) Not to be used by pregnant women. 2)Not to be
used by patients with known hypersensitivity or
allergy to olmesartan or any components of the
formulation. 3) Not to be used by patients with
chronic malabsorption syndromes, cholestasis. 4)
Not to be used by patients with organic obesity
(such as hypothyroidism).
2. Indications of Orlistat capsules (Benicar): Used
for the treatment of obese or overweight patients
(body mass index ≥24).

Fig. 1: An example of retrieval-enhanced generation can be
illustrated as follows. On the left side, we perform retrieval
using only the embedding model and then utilize PULSE-
7Bv5 to generate the answer. On the right side, we employ our
method, EM-FT, for retrieval and then utilize PULSE-7Bv5 to
generate the answer.

reliable knowledge bases during the generation process, we
significantly improve the reliability of the generated results by
fact-checking against trusted content in the knowledge bases.

The dynamic nature of medical knowledge requires retrieval
systems to integrate the in-depth expertise of domain special-
ists with real-time updated data to ensure the accuracy and
timeliness of retrieval information. For example, pharmaceu-
tical databases or medical literature databases can be used
to obtain the latest drug instructions or research findings. In
the case of drug instructions, the commercial names of drugs
in practical applications usually vary based on the naming
conventions of manufacturers, and people often tend to use
abbreviated names when making inquiries. If only keyword-
based retrieval or non-specialized medical knowledge retrieval
systems are used, it may result in recommending incorrect
drugs or inaccurate search results. Similarly, when retrieving
medical literature, the model needs to understand complex
medical concepts and research findings so that users can
quickly and accurately locate relevant documents when asking
questions about the content of articles.

To enhance the retrieval of drug information from our



databases, we employ self-collected datasets: Medical Menu
Dataset (MMD) and Medical Paper Dataset (MPD). Domain
experts have meticulously annotated MMD to include crit-
ical details like generic and brand names, usage, dosage,
indications, contraindications, and drug interactions. Utilizing
these annotated datasets, we fine-tune our embedding model
to facilitate precise identification and retrieval of drug-related
information. Specifically, our approach trains the embedding
model in the retrieval stage using supervised datasets and
incorporates contrastive learning methods to improve model
performance at a low cost. In the field of dense retrieval,
embedding models like M3e [5] and E5 [6] play a crucial role.
Building upon these models, we introduce a new module called
the Gate Linear Unit (GLU) module. As illustrated in Figure 2
on the right, EM-FT encompasses the entire Embedding model
along with the GLU module. The EM-FT model is fine-
tuned using a supervised dataset, where the embedding model
is treated as a black box and its parameters are frozen,
focusing the training process entirely on the GLU module.
This approach ensures that medical data can be updated in
real-time while preventing the leakage of private data.

Moreover, by incorporating contrastive learning into the
fine-tuning of the EM-FT model, it becomes more effective
in capturing the relevance between queries and documents.
This allows the query embeddings to be closer to the positive
text embeddings and farther from the negative text embeddings
in the dense vector storage. As a result, compared to current
vector retrieval methods, our approach leads to improvements
in both accuracy and recall rates in the final retrieval outcomes.
Additionally, our method offers advantages over full-parameter
fine-tuning of M3e (M3e-FPFT) by saving time and resource
costs while enhancing the overall accuracy of the retrieval
model.

Figure 1 illustrates the comparison between the retrieval
method proposed in this study and standard baseline meth-
ods on the MMD regarding their impact on the generation
performance of LLMs. The results indicate that the baseline
methods, due to providing inaccurate retrieval results, lead
to erroneous answers generated by the LLMs. This finding
emphasizes the criticality of optimizing retrieval accuracy
in improving the generation quality of LLMs and reducing
hallucination issues. Therefore, in summary, we make the
following contributions:

1) We have collected two large-scale supervised datasets,
namely the MMD and the MPD. MMD and MPD
consist of 100 and 2,219 queries, respectively, sourced
from doctors and LLMs. These datasets serve as two
benchmark datasets for training and evaluating the med-
ical document retrieval capability.

2) We propose a medical document retrieval framework
called REMED. This framework consists of dataset
construction, embedding model fine-tuning, retrieval-
augmented generation, and human evaluation. EM-FT is
an efficient embedding fine-tuning method that enables
end-to-end fine-tuning of medical sentence representa-
tions in large pre-trained models, resulting in improved

medical retrieval performance.
3) We leverage LLM-Aided Query Generation approach

for query generation. We utilize LLMs to generate
queries, as described in Section III-C, which are then
used as user queries to construct supervised datasets.
We subsequently use these supervised datasets to fine-
tune the model and evaluate its performance. By utilizing
LLMs itself to enhance the retrieval model’s capability,
we ultimately strengthen the query generation ability of
LLMs.

II. RELATED WORK

A. Retrieval-augmented Models

Retrieval-augmented generation (RAG) has become a key
approach to improve the quality of language model generation.
This technology can effectively integrate external knowledge
sources into the model by retrieving relevant information and
incorporating it into the model input or context, providing
richer external knowledge support for the model, and enabling
the model to make more accurate and comprehensive judg-
ments in prediction and generation tasks. Recent studies have
shown that by retrieving and enhancing the model’s input
with similar vocabulary or text fragments to the current task,
its generalization ability and handling of unknown data can
significantly improved [3], [4], [7], [8]. In a comparative study
of knowledge injection in LLMs [9], RAG consistently outper-
formed unsupervised fine-tuning for both existing knowledge
encountered during training and entirely new knowledge. More
broadly, retrieval-augmented models have been explored in
various modes and tasks. In text generation, retrieval has pro-
vided prototypes or examples to improve dialogue, translation,
and summarization systems [10]–[12].

Currently, hotspots in the RAG field are mainly focused
on improving retrieval accuracy, optimizing generation qual-
ity, exploring multimodal knowledge fusion methods, and
leveraging self-supervised learning to enhance model perfor-
mance [13]–[15]. However, while retrieval-augmented tech-
niques have made significant progress in multiple areas, issues
such as data scarcity and domain adaptation, explainability
and controllability, as well as resource efficiency and infer-
ence costs still need further study. Our research is dedicated
to exploring lighter-weight retrieval-augmented mechanisms
aimed at combining the powerful generation capabilities of
large language models (LLMs) to achieve higher efficiency
and scalability in model performance improvement.

B. Large Language Models (LLMs)

Large language models (LLMs) like GPT-4 [1] and
Claude [16] has significantly improved the quality of text
generation, benefiting natural language processing (NLP).
However, the performance of LLMs is still limited in specific
vertical domains due to the lack of specialized knowledge.
To address this issue, researchers have adopted methods such
as fine-tuning [17], [18], retrieval augmentation [4], post-
pretraining [19] and prompt optimization [20]–[22] to improve
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Fig. 2: REMED framework. The REMED framework integrates dataset construction (Section III-A III-B), an efficient
embedding fine-tuning EM-FT model (Section IV-D), retrieval-augmented generation, and human evaluation of LLM responses
(Section V-D).

the output of LLMs in vertical domains and make them more
professional and precise.

Meanwhile, some researchers [23]–[26] have attempted to
use LLMs to assist data annotation by automatically generating
a large amount of annotated data with their text generation
capabilities, enriching datasets and improving the effect of
model training. This method reduces annotation costs and
provides new ways to solve data scarcity problems.

In our research, by leveraging LLMs’ ability to deeply
analyze documents and craft retrieval queries, along with
integrating their generative skills with our enhanced retrieval
approach, we achieved more precise and relevant answers, im-
proving question answering systems’ performance and laying
the groundwork for LLMs’ use in more sophisticated tasks.

III. SUPERVISED MEDICAL DOCUMENT DATASETS

In this section, we specifically introduced two self-collected
supervised medical document datasets: the Chinese Medical
Document dataset (MMD) and the English Medical Document
dataset (MPD). We provided detailed explanations of the
methodology for generating queries using the LLM-Aided
Query Generation approach.

A. Medical Menu dataset (MMD)

MMD aims to be a comprehensive and reliable bench-
mark for evaluating medical information retrieval systems.
We source data from the authoritative “WHO Medicine”*

and cover all drug information in the “National Pharma-
copoeia”, comprising over 200,000 records. This provides

*https://whoyx.com/service

solid data support for key fields such as medical research
and drug development. MMD takes into account factors such
as positive screening, negative screening, and noisy data to
comprehensively evaluate system performance. As depicted
in Figure 3, manual annotations were carried out for each
medical question to assess the relevance of drug names. These
drug names were categorized into two primary directions:
medication instructions and light medical inquiries. A total
of 1,276 reference recall data points were annotated, spanning
100 distinct medical questions. In our experiments, the training
set comprises data from the initial 70 questions, totaling 573
instances, while the remaining 30 questions constitute the test
set, with a total of 205 instances.

B. Medical Paper dataset (MPD)

We construct a sampled medical document dataset by
sampling 1,000 papers from the well-known National Center
for Biotechnology Information (NCBI)* in the United States.
We abbreviate this dataset as Medical Paper dataset (MPD).
As shown in Figure 4, we pre-process and clean the MPD
to ensure the accuracy and reliability of our analysis. At
first, we performed a series of filtering operations to exclude
literature that did not meet our research criteria, such as
informal conference speeches and non-peer-reviewed reports.
Additionally, to focus on the analysis of textual content, we
removed tabular data and non-standard mathematical formulas
from the papers.

Furthermore, for the cleaned documents, we implemented a
series of processing steps to adapt them to the requirements

*https://www.ncbi.nlm.nih.gov/

https://whoyx.com/service
https://www.ncbi.nlm.nih.gov/


[“Paracetamol Tablet (||) Andufen Anti-gout Pain Medicine 
Indications: This product is a medium-strength analgesic. ..."],
[“Paracetamol Tablet (||) Andufen Anti-gout Pain Medicine 
Contraindications: 1. This product is a Class II specially managed 
drug by the state..."],
["Paracetamol Tablet (||) Andufen Anti-gout Pain Medicine Dosage 
and Administration: Oral administration: Adults, take one tablet per 
time,..."],

...

         Content:【 Drug Name + Product Name +
         Department Classification+ Attribute 1 … 】

 

{
"Product Name": "Andufen",
"Generic Name": "Paracetamol 
Tablet (||)",
"Department Classification": 
"Antipyretic and Analgesic",
...
"Indications": "This product is a 
medium-strength analgesic... ",
"Contraindications": 1. This 
product is under the national 
special control of Category II...",
"Dosage and Administration": 
"By mouth: Adults, take one 
tablet at a time,... "
...
}

Fig. 3: The structured details of MMD. This figure illustrates
the process of transforming the original medical menu dataset
into structured text. The key focus is on the content, which is
amalgamated with drug names, product names, and department
classifications for each data point, and the attributes vary
accordingly.

Structured Text:

Query : q,
Content : [p+,p-,p-,p+,…,p+],
Label : [1,0,0,1,…,1]

Content:【 Primary Title+ Secondary 
Title+Tertiary Title+ Passage1… 】

Medical paper

QueryTitle /
Random
Passages

Generate

LLM

BM25 Score

1 2

45

3

Fig. 4: The structured details of MPD. (1) Using the paper’s
title or random passages as input for the LLM. (2) The
LLM generates relevant queries based on the paper’s title or
passages. (3)Structured text. (4) Computing the BM25 scores
for each query and passage. (5) Using the BM25 scores to
assign labels accordingly.

of the embedding model. Considering the length limitation
for model input, we employed a text segmentation strategy to
divide longer texts into fixed-length segments (with a maxi-
mum sequence length of 768). This approach aims to ensure
that each data segment can be effectively processed by the
model while preserving sufficient contextual information. To
enhance the information density of the data, we appended key
information, including main and subheadings, at the beginning
of each data entry to improve the model’s understanding
and retrieval capabilities. In the end, the processed dataset
consisted of a total of 886 papers with 79,966 data entries. In
our experiments, we divided the MPD into training and test
sets, with the training set accounting for 70% of the data and
using a random state of 42. The MPD, used for generating
queries based on paper titles, was split into a training set
consisting of 392 instances (approximately 60,000 entries) and

a test set consisting of 169 instances (approximately 20,000
entries). Similarly, the MPD used for generating queries based
on random paragraphs was divided into a training set with 658
instances (approximately 100,000 entries) and a test set with
282 instances (approximately 45,000 entries).

C. LLM-Aided Query Generation

To overcome the limitations of the MPD containing only
document data, we adopted a novel LLM-Aided Query Gener-
ation approach to construct a supervised dataset. This approach
leverages LLM (such as GPT-3.5) to automatically generate
user queries based on medical literature titles. This step intends
to simulate the query intent of potential users in the real
world, thereby creating a more realistic training environment.
However, queries generated solely based on titles may not
capture the richness of the article content, affecting the quality
of the dataset and the performance of the retrieval system.

To address this limitation, we further propose a query
generation strategy based on the article content. By analyzing
randomly selected passages from the literature, LLM is able
to generate queries that reflect the details of the literature.
This approach provides advantages in terms of topic coverage,
accuracy, and diversity of generated queries, while promot-
ing the adaptability and accuracy of the retrieval system in
handling complex and diverse information needs. Moreover,
this query generation strategy serves as an effective means for
evaluating the performance of the retrieval system, as high-
quality simulated queries can be generated in the absence of
real user inputs. By integrating LLM-Aided Query Generation
approach into the training process, we not only reduce human
involvement in the dataset construction phase but also improve
the quality and efficiency of the dataset and model training.

Furthermore, queries generated by LLM are also used to
evaluate the performance of the retrieval model. By comparing
the literature returned by the model with the expected retrieval
results, we can quantify the model’s ability to understand
and match user query intent. In this process, the generation
capability and retrieval capability of LLM are seen as mutually
reinforcing. On one hand, the generated queries help the
retrieval model understand and adapt to diverse user needs.
On the other hand, the fine-tuned retrieval model improves
the ability of LLM to generate more accurate and relevant
answers.

In our experiments, we utilized GPT-3.5 as our LLM. For
paper titles, we instructed the LLM to generate three questions
for each title, and for random passages, we extracted five from
each paper, asking the LLM to create five queries based on
these passages. Some of the generated questions had issues,
such as incompleteness or errors. Consequently, we filtered out
these problematic questions, resulting in a final dataset of 210
papers. Next, we compute the BM25 score [27] for every query
and passage to create a similarity ranking metric. Afterward,
we categorize the label as 1 if it exceeds the average score,
and as 0 if it equals or falls below the average score.



IV. SCENARIOS AND APPROACHES

In this section, we introduce our proposed EM-FT model.
Specifically, we describe the embedding model, gated linear
unit (GLU) network architecture, and key formulas used. We
also outline the experimental setup and training procedure.

A. Embedding Backbone

Referring to the MTEB Leaderboard [28], we have selected
two baseline embedding backbone models: the m3e-base
(M3e) [5] for exceptional performance on Chinese datasets
and the e5-base-v2 (E5) [6] for its outstanding performance
on English datasets.

M3e, short for “Moka Massive Mixed Embedding”, is
an advanced natural language processing model developed
and released by MokaAI. This model has been meticulously
trained using the UniEM framework and rigorously evaluated
against the MTEB-zh benchmark [28]. “Massive” signifies its
extensive training data, comprising over 22 million Chinese
sentence pairs, enabling proficiency across a wide range of
language understanding tasks.

E5 is a state-of-the-art family of text embedding models
celebrated for their exceptional adaptability across diverse
tasks. E5 serves as a universal embedding model, effortlessly
integrating into a wide spectrum of tasks that rely on single-
vector text representations. This versatility extends to tasks
like retrieval, clustering, and classification, and E5 consistently
excels in both zero-shot and fine-tuned scenarios.

The design of our Embedding backbone model emphasizes
a high degree of modularity, allowing for easy replacement
based on specific requirements without impacting subsequent
phases of model training. This design approach significantly
enhances the flexibility and adaptability of the framework.

B. Loss Function

We design a contrast loss as supervision to optimize the
embedding space so that documents relevant to the query are
closer than irrelevant documents as shown in Eq. 1 and Eq. 2:

L(W ) = L(q, p+1 , p
+
2 , ..., p

+
n , p

−
1 , p

−
2 , ..., p

−
m), (1)

L(W ) = −log

∑n
i=1 e

(sim(q,p+
i ))∑n

i=1 e
(sim(q,p+

i )) +
∑m

j=1 e
(sim(q,p−

j ))
, (2)

where L(W ) represents maximizing the relevance probability
of positive passages and minimizing the relevance probability
of negative passages with respect to the query q, by training
the model parameters W , and q represents the input query. p+i
are positive passages relevant to the query. p−j are negative
passages irrelevant to the question. We employ cosine similar-
ity sim(q, p) = Cos(E(q), E(p)) as the scoring function to
measure the match between query q and passage p.

To mitigate model overfitting, we augment the L2 term in
the contrast loss. As depicted in Eq. 3, the final loss, denoted
as L, is the sum of L(W ) and L2.

L = L(W ) + λ

n∑
i=1

w2
i , (3)

where, wi represents the model’s parameters, and λ is a scaling
factor for regularization.

C. Activation Function

In our methods, we primarily employ two activation func-
tions: GELU [29] and Swish [30]. The distinctions between
the two methods are illustrated in Eq. 4 and Eq. 5:

GELU(x) = x · Φ(x) = x · 1
2
[1 + erf(x/

√
2)], (4)

Swish(x) = x · σ(βx), (5)

where f(x) is a linear transformation of input x. In Swish
function, β is a constant or a trainable parameter, we make β
equlal to 1, i.e., it becomes the Sigmoid Linear Unit (SiLU)
activation function.

D. EM-FT Model

The EM-FT model architecture integrates two core compo-
nents, the Embedding Backbone and the Trainable EM Head,
aiming to achieve efficient text similarity retrieval. As shown
in Figure 5, our compact Trainable EM Head design contains
three main components: Layer Normalization (LayerNorm),
two linear layers (LinearLayer) with an activation function
in between. Drawing inspiration from recent advancements
in LLM design [31], we offer two choices for the activation
function: GELU and Swish. Both functions are formulated to
introduce nonlinearity while maintaining smooth gradient flow
during the backpropagation process, as demonstrated in Eq. 4
and Eq. 5 respectively.

The choice of using GLU is motivated not only by its
computational efficiency but also by its ability to effectively
preserve the complexity and fine-grained information of the
original text. Additionally, GLU helps maintain the density
of embedding vectors and handles the dimensions of text
data. This concise and efficient network structure enables us
to achieve enhanced accuracy in similarity retrieval during
supervised fine-tuning, all while ensuring the richness of the
text content is preserved.

In the entire process of EM-FT, the query and target
texts are first encoded through the embedding model, which
transforms natural language text into high-dimensional dense
vector representations to reveal their underlying semantic
features. Subsequently, the vector representations processed
by the embedding model are fed into the Trainable EM Head,
which further optimizes and adjusts the vector space to better
capture the relevance between the query and target content.
The EM-FT optimization process is based on the loss function
Eq. 2, where the objective of these loss functions is to adjust
the distances between positive and negative samples in the
multidimensional space, enabling the model to differentiate
between relevant and irrelevant texts more accurately.

Through this approach, the EM-FT model continuously
optimizes its parameters through iterative training to achieve
more accurate text retrieval. The process emphasizes not
only parameter optimization but also the model’s ability to
generalize when handling complex queries. Ultimately, the
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Fig. 5: The structured details of EM-FT model. EM-FT
contains an embedding backbone and trainable EM head.

goal of the EM-FT model is to strike a balance where the
model can improve retrieval accuracy and efficiency while
maintaining the richness of the text content.

Compared to full fine-tuning of the embedding model,
the EM-FT model provides a more efficient strategy. This
strategy allows for incremental updates to the model, adjusting
only the parts affected by newly added data. This approach
significantly reduces computational resources and shortens the
model update time. By locally adjusting parameters instead of
retraining the entire model with each database update, the EM-
FT model can adapt to new information more agilely, ensuring
real-time and accurate retrieval in the search system.

E. Evaluation metrics

In our experiments, we assess the retrieval results using four
metrics:

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
, (6)

where TP (True Positive) counts the correctly predicted pos-
itive examples, FN (False Negative) counts the positive ex-
amples incorrectly predicted as negative. Similarly,FP (False
Positive) tallies the negative examples incorrectly predicted
as positive, and TN (True Negative) represents the correctly
predicted negative examples.

In information retrieval, Average Precision (AP) serves as
an evaluation metric for assessing the quality of ranking in
response to a single query. AP calculates the average precision
values of the top-K results for a query. Each precision value
is weighted by the relevance of the result. The mean of the
APs across all queries is known as the mean Average Precision
(mAP).

mAP =

∑K
i=1 APi

K
, Hit rate =

∑N
i=1 hit(i)

N
, (7)

in our experiments, hit(i) is present when at least one positive
passage has been retrieved within the Top-K results, in which

case hit(i) = 1; otherwise, hit(i) is set to 0.
∑N

i=1 hit(i) is
the sum of hit(i), and the N is the sum of the query.

F. Training details

The model was trained using the SGD optimizer with initial
learning rate of 0.01 which decays by a factor of 0.95 for every
epoch. The training process encompassed 50 epochs, with each
epoch representing one complete iteration through the training
data. To mitigate overfitting and enhance generalization, a
regularization coefficient of 1e-6 was applied.

V. EXPERIMENT

In this section, we present the state-of-the-art (SOTA) base-
line we utilized, share the results obtained using our method,
conduct a detailed analysis of these results, and perform
additional ablation studies to support our approach.

A. Baselines

Retrieval with LLM. Following the recent state-of-the-art
work REPLUG [4], we propose the baseline based on the
LM-Supervised Retrieval method, which we call LSR. The
LSR directly prompts the LLM to score the similarity between
query and documents, such as:

PROMP TEXT=“Here are a query and a list of documents.
Please provide the similarity score between these two sen-
tences. The first is [QUERY] and the other is [Doc1, Doc2, ...,
DocN]. Score the query with each of the document in range
from 0 to 10 in which 10 means the most similar while 0
means the most different.

Embedding-based baselines. For “M3e-base” method, we
directly use the pre-trained M3e embedding model to embed
queries and contents, and then employ a FAISS index to
enable medical document retrieval. For “M3e-FPFT” (M3e
Full-Parameter Fine-Tuning), we utilize our MMD to fine-tune
the M3e pre-trained model, then employ the fine-tuned model
for retrieval. E5-base-v2 (Title) and E5-base-v2 (RP) also use
E5 directly for embedding without fine-tuning.

B. Results and analysis

In Table I, we present the performance of the MMD using
various evaluation metrics with a focus on the Top-K=10
recommendations. The evaluation metrics include Recall, Pre-
cision, Hit Rate, and mAP (mean Average Precision), as shown
in Section IV-E.
• Incorporating L2 regularization in the loss function signif-

icantly improves model performance, with recall increasing
by around 6%. This validates that regularization helps avoid
overfitting and enhances generalization capability.

• Using the EM-FT yields superior performance compared
to EM-FT(s). The design of swiglu in EM-FT(s) may
result in excessively intricate embedding vectors, leading
to overfitting. EM-FT, on the other hand, yields improved
vector representations, thereby enhancing retrieval quality.



TABLE I: Performance evaluation of different methods on
MMD (Top-K = 10).

Recall Precision Hit-rate mAP

LSR [4] 0.387 0.300 1.000 0.492

M3e-base 0.503 0.548 0.862 0.513

M3e-FPFT 0.391 0.292 1.00 0.366

EM-FT(s) (w/o L2) 0.524 0.532 0.897 0.589

EM-FT(s) (w/ L2) 0.533 0.54 0.931 0.570

EM-FT (w/o L2) 0.554 0.560 0.897 0.564

EM-FT (w/ L2) 0.563 0.580 0.897 0.587

• Our model performs better than M3e-FPFT. M3e-FPFT
incurs a tenfold rise in time cost, while recall and precision
decrease by 17.2% and 28.8% respectively, compared to
EM-FT (W/L2). This indicates our model is more compu-
tationally efficient.
In Table II, we have included the performance metrics for

MPD using different evaluation criteria. “Title” refers to the
mean LLM-generated queries based on the paper title, while
“RP” represents the mean LLM-generated queries based on
random passages from the paper.

TABLE II: Performance evaluation of different methods on
MPD (Top-K = 10).

Recall Precision Hit-rate mAP

LSR [4] 0.390 0.250 0.750 0.350

E5-base-v2 (Title) 0.212 0.526 0.994 0.541

E5-base-v2 (RP) 0.229 0.562 0.954 0.600

EM-FT(s) (Title) 0.300 0.767 1.00 0.763

EM-FT(s) (RP) 0.342 0.849 1.00 0.913

EM-FT (Title) 0.356 0.952 1.00 0.967

EM-FT (RP) 0.334 0.831 1.00 0.881

• Both EM-FT and EM-FT(s) result in noticeable gains
over the baseline. Specifically, EM-FT (Title) boosts recall,
precision and mAP substantially, by 14.4%, 42.6% and
42.6% respectively.

• Using LLM-Aided Query Generation approach for query
generation proves beneficial. In order to confirm whether
the performance improvements are attributed to the method
of query generation, we employed two distinct approaches:
Title and RP. We observed that the model’s performance im-
proved under both approaches, thus validating the generality
of our method.

C. Ablation studies

In this section, we conducted a comparison to assess the
impact of utilizing different labels for training on the model’s
performance. To keep it concise, our analysis primarily con-
centrated on the evaluation results for the medical menu
dataset with a Top-K value of 10, as presented in Table III.
Here’s a simplified explanation of the various labels employed:

GT label: These labels were assigned manually, primarily
based on drug names, to determine whether a query should be
included or not.

GT ∨ M3e label: This label combines both the GT labels
and the selected labels from “M3e label”. It retains the original
labels while incorporating the labels chosen based on the
additional criteria.

GT ∧ mAP label: This label differs from “M3e label” in
terms of how Top-K is defined. In “mAP label”, Top-K is
defined as the data points with scores higher than the mAP
threshold.

GT ∧ M3e label: These labels were derived from the GT
labels with additional criteria. If a data point meets both of
the following conditions: a) Its similarity score is among the
Top-K (where Top-K is defined as half the content length),
and b) The original label is also 1, then the label for that data
point is set as 1; otherwise, it is set as 0.
• “GT ∧ M3e label” and “GT ∧ mAP label” methods

perform better. Compared to M3e-base, “GT ∧ M3e label”
and “GT ∧ mAP label” methods show improvements of
approximately 4.8%-9.6% and 3.4%-10.9%, respectively, in
terms of recall and mAP.

• The performance is worse when using the GT label.
Using the “GT label” for fine-tuning results in even worse
performance than M3e-base, with a decrease of approx-
imately 1.2% in recall and 0.3% in mAP, respectively.
Furthermore, the performance of “GT ∨ M3e label” is also
worse compared to using “GT ∧ M3e label” or “GT ∧ mAP
label” individually.

D. Human Evaluations

As illustrated in Figure 1, we select the Top-2 retrieval
results from the knowledge base as prefixes. The query is
concatenated with each prefix in the format “prefix + query”
as input to the PULSE-7Bv5 [32], a clinical language model
(CLM). Since the quality of retrieval model’s results directly
impacts the quality of outputs from the LLM, evaluation of
the final responses allows us to indirectly measure whether
the retrieval model has an enhancing effect. We randomly
selected t(t = 20) test sample pairs (M3e, EM-FT (w/L2)).
Each answer is scored as “+1” if EM-FT (w/L2) generates
better, “0” if EM-FT (w/L2) has the equal effectiveness as
M3e, and “−1” if EM-FT (w/L2) is even less effective than
M3e.

We gathered evaluations from 5 individuals, including both
specialized healthcare team members and generalists, with
scores of 0.5, 0.3, 0.1, 0.4, and 0.4. The final result is 0.34
with P-value 0.0041. So we reject the null hypothesis that
“M3e gets better answers than EM-FT” with 1% significance.
This proves that our optimized retrieval model (EM-FT) does
provide better answers.

VI. CONCLUSION

In this study, we propose a medical document retrieval
framework called REMED. The framework includes data set



TABLE III: Performance evaluation of different methods.(Top-K=10)

Recall Precision Hit-rate mAP

M3e 0.379 (+0.0%) 0.592 (+0.0%) 0.931 (+0.0%) 0.551 (+0.0%)

GT label 0.368 (-1.2%) 0.568 (-2.4%) 0.966 (+3.5%) 0.548 (-0.3%)

GT ∨ M3e label 0.395 (+1.6%) 0.596 (+0.4%) 0.966 (+3.5%) 0.638 (+8.8%)

GT ∧ mAP label 0.413 (+3.4%) 0.632 (+4.0%) 0.931 (+0.0%) 0.660 (+10.9%)

GT ∧ M3e label 0.428 (+4.8%) 0.632 (+4.0%) 0.931 (+0.0%) 0.646 (+9.6%)

construction, embedding model fine-tuning, retrieval enhance-
ment generation, and human evaluation. The EM-FT is an
efficient embedding fine-tuning method that enables end-to-
end fine-tuning of medical sentence representations in large
pre-trained models to improve medical retrieval performance.
Additionally, we collected two supervised data sets, MMD
and MPD, for fine-tuning the EM-FT model. In summary, our
REMED framework for medical document retrieval ensures
the privacy and security of the data sets. We have demonstrated
that by improving the quality of the retrieval model’s Top-
K results, we can enhance the accuracy of LLM responses.
However, our work has some limitations, such as the binary
labeling system (0 and 1). In future efforts, refining the
labeling to include a range from 0 to 4 would be a promising
direction, potentially leading to more precise results.
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