
Heterogeneous Federated Learning with Scalable Server Mixture-of-Experts

Jingang Jiang1† , Yanzhao Chen1† , Xiangyang Liu1 , Haiqi Jiang1 and Chenyou Fan1∗

1South China Normal University, Guangzhou, China
fanchenyou@scnu.edu.cn

Abstract
Classical Federated Learning (FL) faces challenges
when deploying large models on power-constrained
clients. We propose an asymmetric FL mechanism
that enables the aggregation of compact client mod-
els into a comprehensive server Mixture-of-Experts
(MoE), allowing for efficient fusion of the most
pertinent client models to update each server ex-
pert based on the measured relevance. To address
the Non-IID data issue, we optimize the server-side
MoE architecture by incorporating a main expert
that always activates alongside a set of selectively
activated routed experts. This configuration ensures
a balance between learning general knowledge and
specific data distribution. Our Fed-MoE framework
is model-agnostic and has demonstrated notable im-
provements on vision FL tasks with million-scale
ResNet backbones, and language tasks with billion-
scale BERT and GPT-2 backbones.

1 Introduction
Federated Learning (FL) [McMahan et al., 2017] has become
a widely adopted approach for distributed learning from di-
verse data sources while preserving data privacy. However,
classical FL requires the learning model to be identical across
all clients for possible parameter averaging. This requirement
poses challenges in environments with constrained client-side
capacities such as edge devices, rendering standard FL un-
suitable for learning large language models (LLMs) and large
visual models (LVMs) with many edge devices.

Recognizing this critical limitation, a question comes to
us naturally: can we deploy asymmetric models at client and
server levels? Given that clients typically possess relatively
scarce data and limited computational capabilities, their mod-
els should be designed to be compact and efficient. Conversely,
the server boasts substantial computational resources, enabling
it to leverage significantly larger and more complex models.
Thus, the second question arises: how can we perform model
averaging for asymmetric client and server models?

We are seeking the answer from the recently explored
Mixture-of-Experts (MoE) [Shazeer et al., 2017] architecture.
A MoE comprises of multiple expert sub-networks, each tai-
lored to a specific segment of the input space. A learnable gate

Figure 1: Overview of Fed-MoE. Compact client models federate
into a large unified server Mixture-of-Experts.

dynamically routes input samples to the most suitable experts.
Inspired by this approach, we propose a novel design where
identical compact client models are deployed at the client side,
while a large MoE model resides on the server side. Each ex-
pert within the server MoE shares identical architecture with
each client model .

We introduce Fed-MoE, a Federated Mixture-of-Expert sys-
tem that enables the aggregation of compact client models into
a powerful and large central model. In Fig. 1, we depict this
practical scenario featuring a M distributed power-efficient
clients, each having with a compact single model. Each client
model contributes to one or multiple relevant experts within
the server’s MoE. This collaboration between client and server
models, detailed in the subsequent paragraphs, aims to en-
hance overall performance and efficiency. With Fed-MoE,
thousands of users can collaborate to build a unified billion-
scaled large model on the server side, leveraging expertise
from all client data.

Our approach involves a three-stage iterative process for up-
dating the server’s MoE gate and experts from heterogeneous
client models. To facilitate this, we postulate the existence
of a small, reserved dataset at the server. We also made sub-
stantial re-design of the classical model averaging mechanism.
In the first stage, we calculate the relevance between each
client expert and each server MoE expert. Then we update
the server’s MoE experts through a weighted FedAvg process,
with weights derived from the relevance scores.

In the second stage, we focus on updating the MoE gate.

Initially, we compute the gating probabilities on the reserved
data instances. Subsequently, we aggregate predictions from
the top-K most activated experts and calculate the classifica-
tion loss based on the gating outcomes. Finally, we update the
gate parameters end-to-end to minimize this loss.

In the third stage, we synchronize the updated server experts
back to each client. By computing a server-to-client correla-
tion matrix, we gather the top-K most relevant server experts
for updating each client model. After, the clients perform
local updates and send to the server for the next round of FL.
Subsequently, the expertise of server experts gradually aligns
with the global data space across all clients.

During inference, the MoE gate selectively activates only
the relevant subset of experts for each incoming data, reducing
computational costs and diversifying expert functions.

To further tackle the non-IID data issue over the clients, at
the server-MoE level, we design two types of MoE experts: a
main expert which always activates, and a set of routed experts
which share activation together. The main expert dedicates to
capturing common knowledge while the routed experts focus
on learning specific client data classes. This design enables
different routed experts to capture the unique data patterns
from different clients. To facilitate the diversification of the
routed experts, we further introduce a novel Gating Entropy
loss, which encourages a sharply peaked gating distribution
over the routed experts.

Our contributions are summarized as follows:
1. We propose an effective Federated Mixture-of-Expert learn-

ing framework that allows for the deployment of a large
number of compact client models while maintaining a uni-
fied large MoE at the server-side.

2. To address the Non-IID issue, we devise a main expert that
captures common knowledge, and a set of routed experts
that share activation to learn specific client data classes.

3. We design efficient server MoE-experts and MoE-gate up-
date mechanism with innovated gating entropy loss to en-
sure diversification of the routed experts.

4. Our Fed-MoE shows promising results upon benchmark
FL datasets in large-scale vision and language tasks.

2 Related Work
Federated learning (FL). FL [McMahan et al., 2017; Zhao
et al., 2018; Sattler et al., 2019; Li and others, 2019; Wu
et al., 2020; Karimireddy and others, 2020] emerges as a
decentralized and privacy-preserving learning strategy. The
pioneering FedAvg [McMahan et al., 2017] demonstrated the
effectiveness of model averaging from separately trained client
models. Many recent studies worked on tackling the Non-IID
setting [Zhao et al., 2018; Sattler et al., 2019; Li et al., 2020],
few-shot setting [Wu et al., 2020; Itahara et al., 2023; Jiang et
al., 2024b] and privacy enhancement [Wei and others, 2020;
Xin et al., 2020; Liu et al., 2023; Fan et al., 2022] of client
data in FL scenarios. Some approaches focus on handling
model heterogeneity, including HeteroFL [Diao et al., 2021],
FedHM [Park and Ko, 2024], FedRolex [Alam et al., 2022],
and Split-Mix [Hong et al., 2022].

Mixture-of-Experts (MoE). MoE techniques [Jacobs et al.,
1991; Jordan and Jacobs, 1994] utilize a set of expert net-

works are combined under a gating module which specialize
in different aspects of the input data. Recently, MoE has been
applied in language modeling with notable successes. The
sparsely-gated MoE [Shazeer et al., 2017; Zuo et al., 2021;
Jiang et al., 2024a] can scale up the model capacity with less
increased computational complexity. GShard [Lepikhin et
al., 2020] enable the scaling of multilingual neural machine
translation models using sparse gating and automatic sharding.
Switch Transformers [Fedus et al., 2022] further scales up
Transformer models to trillion-parameter models. GLaM [Du
and others, 2022] reduces both training and inference costs of a
large MoE language model. MoE has also been widely applied
in building large vision-language models [Mustafa et al., 2022;
Lin et al., 2024]. DeepSeek-MoE [DeepSeek-AI, 2024] first
proposes the concept of shared experts and routed experts.

Recently, some FL studies have made attempts to use MoE
for personalized learning. FLMoE [Zec et al., 2020] directly
applies FL for MoE models to better suite to heterogeneous
client data. AEPFL [Isaksson et al., 2022] achieves a more
adaptive cluster model by balancing exploration and uses the
cluster model as an expert model in the MoE to enhance per-
formance. PFL-MoE [Guo et al., 2021] modifies the MoE
architecture to enhance decision-making capabilities. Fed-
Mix [Reisser et al., 2021] directly employs one global MoE to
mitigate the Non-IID data by segmenting data source regions.
FedJETs [Dun et al., 2023] reduces communication costs by
selecting a subset of experts that match the features of client
data for communication. Differently, our method allows the
server MoE to have a heterogeneous number of experts.

3 Task Description and FL Preliminaries
We construct a practical scenarios in which models at client-
side and server-side are asymmetric such that the client model
is compact while the server model is a large unified MoE.

Model at client side. We consider the FL scenario with M
distributed clients, each having a compact single-expert model.
Let Mi be the i-th client model parameters. At each FL round,
we randomly select m participating clients.

MoE at server side. We deploy a large K-expert MoE at
the server side, including two types of experts: a main expert
which always activates, denoted as E0 and a group of K routed
experts denoted as E1:K . The routed experts has a trainable
gating module G responsible for activating corresponding
routed experts. For brevity, we use K∗ = 1+K to denote the
number of both main and routed experts.

Server reserved data. We assume the server possesses a
tiny reserved dataset Dr, sampled uniformly from the global
data space as prior knowledge. The Dr assists training an
effective server gating module exclusive to the server side,
which is non-overlapping with client data, thus adhering to
federated learning principles.

Fed-MoE task formulation. Let G(x) be the gating prob-
ability of input x over K routed experts, and Ei(x) be the
i-th expert network which predicts input x. The collective
response of the MoE module can be expressed as a weighted

Stage-B
 Server experts and gate update

Step 1 : Get server gating responses

…

…

… …… …

…

∆LG
ceServer Expert

Enew

Update SGD

Server Gate
G

Server Gate
Gnew

Step 0 : Probe client experts’ responses

Client expert
M

Step 3 : Update server experts with moving FedAvg

Response
 P

Activation Q

Step 2 : Get server-client correlation

Update

correlation matrix
W

Step 4 : Update server gating module

private
data

reserved
set

Client Expert

Client experts synchronization
Step 0 : Get updated server gating

Server
MoE

Step 1 : Client Expert Update

Update

Step 2 : Client Synchronization

Client Expert
M

reserved
set

Server Gate
Gnew

Activation
Qnew

Stage-A Stage-C

E←(1-λ) E + λ W*M

M ←λ M + (1 − λ)W*E

reserved
set

reserved
set

Figure 2: Overview of our Fed-MoE pipeline. Stage A-C completes one FL round. Stage-A trains client experts and sends to server. Stage-B
iteratively updates server experts and gate. Stage-C synchronizes updated client experts back to clients.

sum of all experts as follows:

ŷ = (1− α) E0(x)︸ ︷︷ ︸
main expert

+α

K∑
i=1

Gi(x) ·Ei(x)︸ ︷︷ ︸
routed expert

, (1)

where α balances main-expert and routed-experts.

Training objective. Let nk be the number of data samples
for client k. The global learning objective is to minimize the
average loss over each client on local data as follows:

L(E,G) =
1

nk

nk∑
j=1

ℓ(ŷj , yj) , (2)

where ŷi is server model prediction following Eq (1).
Following FL, we decompose the above global training ob-

jective into training each client model wc. Then the weights of
the server experts E1,...,K∗ are aggregated from client model
wc

1,...,M , denoted as: E ← Fuse(wc). We will devise an
effective Fuse function which enables dynamic expertise dis-
patching to enhance server experts from client models.

4 Our Fed-MoE Approach
We decompose our Fed-MoE framework with three stages
which we introduce in below sections.

4.1 Stage-A: Local client training and uploading
Following standard FL procedure, each FL round starts by
training client models with local data. After, m clients are
randomly selected to upload their local models to the server
through networks, as shown in Stage-A of Fig. 2. The server
aggregates these m client models as a federation denoted as
M = {M1,M2, ...,Mm−1,Mm}.

4.2 Stage-B: Server experts and gate update
Stage-B iteratively updates server experts E and gate G for T
iterations, which we decompose as the following steps.

Step-0: Probe client experts’ responses
We firstly get client experts’ responses over reserved set Dr

in order to learn their expertise of data classes. For each data
instance (X, y) ∈ Dr (e.g., image-label pair), we feed to all m
client experts and obtain the C-way classification probability
distribution as P ← M(X) ∈ Rm×C . With ground-truth
label y, we get the true class prob. as confidence level of each
expert as Py = P [:, y] ∈ Rm×1.

Step-1: Get server gating responses
Next, we will repeat Step-1 to Step-4 for T iterations as an
inner-loop to update server gate and α.

At t-th iteration, we begin by feeding data X to the gating
module G, providing the activation prob. distribution as:

Q← G(X) ∈ RK×1 . (3)
Q gives soft assignment of query data X to K server experts,
which has been normalized with softmax.

Step-2: Get server-client correlation
The outer product of Q and Py is a correlation matrix:

W = Q · P T
y ∈ RK×m , (4)

where Wi,j measures the relevance between the i-th expert of
the server MoE and expert from collected j-th client expert.

We subsequently apply a row-wise softmax operation to
normalize the correlation matrix as:

W r = σrow(W) ∈ RK×m , (5)
where each row W r

i,· sums to one and indicates the correspon-
dence between server expert-i with all m client experts.

Step-3: Update server experts with moving FedAvg
At t-th iteration, we denote the K∗ server experts as main-
expert Et

0 and routed experts Et
i for i ∈ {1, ...,K} which get

updated with moving-average strategy as follows:

Et+1
0 ← (1− λ) ·Et

0 + λ · M̄ ,

Et+1
i ← (1− λ) ·Et

i + λ ·W rM , ∀i ≥ 1 .
(6)

The λ ∈ (0, 1) controls the moving-average rate. We use
simple averaging for M̄ with M̄ = 1/m

∑m
i=1 Mi. The

term W rM assigns relevant client parameters weighted by
correlation W r and adds up to server weights.

Step-4: Update server gating module
In an ideally diversified MoE system, the gate G learns to route
queries to relevant experts with the highest precision for that
data class. To this end, we design the learning objective to be
the cross-entropy task loss with gating entropy regularization,
outlined as follows.

Task loss. For each data in reserved set {X, y} ∈ Dr, we
estimate C-way distribution from the main expert as P̂0 ∈
R1×C and K routed experts as P̂X ∈ RK×C .

The MoE gate weighs each routed expert by the activation
QX ← G(X) ∈ RK . We combine all experts’ output such as
P̂ ∗

X = (1−α) · P̂0+α · P̂X as Eq.(1). The task cross-entropy
loss is the negative log likelihood such as:

Lce
G = − 1

|D|
∑

{X,y}∈D

log P̄ ∗
X [y] . (7)

Regularization. Intuitively, a sharply peaked gate activa-
tion Q implies assigning the data to a specific expert with high
confidence. To encourage this desirable expertise diversifica-
tion, we introduce a novel Gating Entropy (GEnt) loss:

Lent
G = − 1

|D|
∑
X∈D

K∑
k=1

QX [k] · logQX [k] , (8)

in which QX [k] indicates the probability (priority) of assign-
ing X to k-th routed expert. We take Lent

G as a regularization
term that we seek to minimize.

The joint gating loss w.r.t. gate G and hyper-parameter α is

Lgate(G, α) = Lce
G + β · Lent

G , (9)

where we set β = 10−3 and discuss in Ablation Table 5.
During inference, we choose routed experts with top-L

gate activation with indices I ← arg TopL(QX). Then we
integrate main expert and top routed experts’ predictions re-
weighted by the activation values after softmax, such as:

P̄X = (1− α) · P0 + α · σ(Q⊤
X [I]) · P̂X [I] . (10)

The complete steps of Stage-B are summarized in Algo. 1.

4.3 Stage-C: Client experts synchronization
We update m participating client experts accordingly for next
round of local training. As shown in Stage-C of Fig. 2, we
decompose this process as follows. We firstly refresh the
server-client correlation matrix W ∈ RK×m with server MoE
refined in Stage-B, by executing Eq.(3)-(4). We also synchro-
nize the main expert from the server to the client based on the
present value of α, as demonstrated by the equation below:

W ′ = cat(1− α, α ·W) , (11)

We subsequently apply a column-wise softmax operation to
correlation matrix W ′, yielding a normalized server-to-client
correspondence as:

W c = σcol(W ′) ∈ RK∗×m , (12)

in which each column W c
·,j measures the normalized relevance

of all server experts with the j-th client expert. This relevance

Algorithm 1 Fed-MoE overview.
while round e ≤ E do

Stage-A: Local client training and uploading
/* Upload m participating client models to server. */
M ← {M1,M2, ...,Mm−1,Mm}.

Stage-B: Server MoE iterative update
/* Step-0: Probe client experts’ responses on Dr . */
P ←M(X), ∀(X, y) ∈ D // client responses

Py ← P [:, y] ∈ RK×1 // label confidence
while t ≤ T do

/* Step-1: Get server gating responses. */
Q← G(X) ∈ RK×1 // gating of Eq.(3)
/* Step-2: Get server-client correlation. */
W r ← σrow(Q · P⊤

y) ∈ RK×m

/* Step-3: Update server experts by moving FedAvg. */
Et+1

0 ← (1− λ) ·Et
0 + λ · M̄ ,

Et+1
i ← (1− λ) ·Et

i + λ ·W rM , ∀i ≥ 1 .
/* Step-4: Update server gating module. */
Gt+1 ← Gt − η ·∆Lgate ,
αt+1 ← αt − η · ∇Lce

G . // Loss Eq.(9)

Stage-C: Synchronize model E back to clients.
/* Get updated server gating. */
Q← G(X) // G updated in Stage-B
/* Get updated server-client correlation. */
W c = σcol(cat(1− α, α · (Q · P⊤

y)) ∈ RK∗×m

/* Update client experts by moving FedAvg. */
M = λ ·M + (1− λ) · (W c)⊤ ·E // Eq.(13)

can guide each client expert Mj to gather parameters from
server experts E with weights such as (W c

·,j)
⊤E.

We formulate the update procedure of client experts M
with exponential moving FedAvg in matrix form as:

M ← λ ·M + (1− λ) · (W c)⊤ ·E , (13)
in which λ ∈ (0, 1) controls the moving average rate. Finally,
the server transmits the client experts to their corresponding
owners for next round of local training. The above process is
shown in Fig. 2 (Stage-C) and Algo. 1 (Stage-C).

5 Experiments
We verify our approach on the benchmark Federated Ex-
tended MNIST (FEMNIST) [Caldas et al., 2018], CIFAR-
10 [Krizhevsky, 2009] for image classification task, SENT-
140 [Caldas et al., 2018] for textual sentiment classification
task and YELP [Zhang et al., 2015] for 5-way review star
classification task.
Vision data split. We follow the original Non-IID split of
FEMNIST according to different writing styles of 3500 users.
We choose 50 and 100 clients as two FL scenarios for FEM-
NIST, each having 6200 and 5650 data, respectively. On
CIFAR-10, we simulate highly Non-IID scenarios by distribut-
ing data classes using a Dirichlet distribution (α=1.0) to ensure
that each client gets a unique, proportionately varied subset
of classes. For 50 and 100 cases, each client has 750 and 375
data, respectively.

On the sentiment analysis benchmark SENT-140 [Caldas et
al., 2018], we follow Fan et al. 2022 to evaluate as a binary
classification task. We reserve 100 clients, each having 190
sentences for each class. The server reserves |Dr| = 1000
sentences. We tokenize each sentence to a max of 64 words.

The Yelp 5-way classification task aims to predict the num-
ber of stars for a review on a scale of 1 as most negative to
5 as most positive. We configured 100 clients, where each
client gathers 5,000 data samples. The data is partitioned in
a Non-IID fashion, ensuring that one class predominates on
each client. The server reserves |Dr| = 1000 samples. We
tokenize each sentence to a max of 64 words.

5.1 Fed-MoE and Baselines for comparison
Model architectures. In our settings, each client model and
each server expert shares a same architecture. The difference
is that the server MoE includes a main expert and K = 5
routed experts, thus having much more parameters than a
single client model. Each single model is a 2-layer CNN for
FEMNIST, a ResNet-18 for CIFAR, BERT for SENT-140
sentiment analysis, and GPT-2-Medium for Yelp. Due to GPU
resource constraints, in the experiments on SENT140 and
Yelp, we use a main expert and K = 3 routed experts on the
server side. Specifically, for the Yelp experiments, we employ
GPT-2 as the gate model for the MoE. The model size and
communication costs are summarized in Table 2.
FL baselines. FedAvg [McMahan et al., 2017] uses standard
parameter averaging for model fusion. FedProx [Li et al.,
2020] adds a proximal term to regularize the client update from
deviating too far from the global model. Both methods do not
possess MoE parameters and follow standard FL training.
MoE baselines. Cent-MoE (Centralized MoE) trains a plain
5-Exp MoE [Shazeer et al., 2017] only with the server reserved
set, without using any client data. FedMix [Reisser et al.,
2021] has a 2-Exp MoE which employs a direct FedAvg to
aggregate both client experts and their gate modules. Thus its
server MoE is also a 2-Exp server MoE. FedJETs [Dun et al.,
2023] consists of m = 5 anchor clients and M −m ordinary
clients, each having a 2-Exp model. In each FL round, m
anchor clients as well as m randomly selected ordinary clients
participate in learning.

Dataset FEMNIST (ResNet) Yelp (GPT-2)

MoE Params. 6.5 / 26 / 52 (M) 0.36 / 0.93 / 1.59 (B)

Comm. Cost 33 / 130 / 33 (M) 1.02 / 2.79 / 1.02 (B)

Table 1: Server MoE parameters and FL communication costs for
FedAvg, FedMix, and our Fed-MoE.

5.2 Implementation details
Experimental Settings. We perform all experiments on a
system with 3 Nvidia 4090 24G graphics cards, with M = 50
and 100 clients to build a large-scale FL system. We set a
K-expert server Fed-MoE framework, where a main expert
aggregates model parameters from the activated m-clients in
each iteration. For vision tasks, we set K = 5 and m = 5,
applying a 2-layer CNN for FEMNIST and ResNet-18 for
CIFAR-10. For language modeling tasks, we set K = 3 and
m = 3, using BERT-base for SENT-140 and GPT-2 for YELP
which have billion of parameters. Details are in Table 1. The
learned routed-experts importance α in Eq. 1 of FEMNIST,
CIFAR, SENT140 and Yelp are 0.56, 0.38, 0.48 and 0.50.

Communication cost and model complexity. We show the
FedAvg, FedMix and Fed-MoE parameters and FL commu-
nication costs in Table 1. All MoE-based methods select m
active clients for each round of learning with cost of m model
parameters. FedMix and FedJETs have to upload the client
gates to the server with additional costs.

For Yelp task, FedAvg has about 0.36B parameters of a
single GPT-2 model at the server-side. Our Fed-MoE ap-
proach, on the other hand, has 1.59B parameters, comprising
a main expert, three routed experts, and a router. In terms of
inference workload, Fed-MoE is comparable to FedMix, as
only the top-2 experts (including the main expert) are selected
for activation. Also, the communication cost for Fed-MoE
is only 1.02B, significantly less than that of FedMix, which
incurs a substantial 2.79B due to the transfer of additional
MoE modules on the client-side.

5.3 Results with Various Datasets and Settings
Vision tasks. Table 2 first two columns (shaded in yellow)
present the classification results for FEMNIST and CIFAR-10
datasets under client configurations of (M = 10, 50, and 100).

On FEMNIST, Fed-MoE consistently outperforms baseline
methods across all client configurations. For instance, at M =
50 clients, Fed-MoE achieves over 10% higher accuracy than
FedAvg and FedJETs, and approximately 4% and 9% higher
than FedMix and FedProx, respectively. We observe that as
the number of clients increases and each client possesses less
data,our Fed-MoE method gradually decreases, showcasing
a larger performance advantage compared to other methods
(FedAvg and FedProx).

On CIFAR-10, a similar trend is observed. Fed-MoE
achieves 5–7% higher accuracy than FedMix and 1–8% higher
accuracy than FedJETs as the number of clients increases from
M = 10 to M = 100. This indicates Fed-MoE’s robustness
in large-scale federated learning scenarios where Non-IID data
and limited per-client data pose significant challenges.

FedMix and FedJETs rely on direct aggregation of gate
and expert models, which does not sufficiently account for
each server’s expertise, leading to suboptimal performance in
Non-IID settings. In contrast, our proposed Fed-MoE features
an effective expertise dispatching mechanism. It fuses client
models into relevant server experts and adaptively updates the
gating module to align with evolving expertise.

Language tasks. We show SENT-140 and YELP results in
Table 2 columns shaded in yellow. On SENT140, having a
BERT [Devlin et al., 2018] for 2-way sentiment classification,
we observe that Fed-MoE averagely outperforms the 2nd-
place FedMix by 1.7%, FedProx by 2.5% and FedAvg by
2.8%, while leading the weakest FedJETs by 7.45%. On
YELP, having a GPT-2 [Devlin et al., 2018] for 5-way task,
we observe the Fed-MoE averagely outperforms the 2nd-place
FedProx with a 1.2% lead and 2.1% over FedMix. The plain
FedProx even surpasses FedMix and FedJETs, implying that
a simple average of MoE gate would harm the training in
experiments with large-scale models in Non-IID settings.

Fed-MoE outperforms at large-scale FL case. Our Fed-
MoE consistently outperforms FedMix and FedJETs, achiev-
ing 6–7% higher accuracy on vision tasks and 4–5% on lan-

Dateset FEMNIST CIFAR10 SENT140 YELP AVG

Model CNN ResNet BERT GPT-2 Acc
Client Num. 10 50 100 10 50 100 10 50 100 10 50 100

FedAvg 2017 91.89 75.84 74.02 62.30 28.37 24.63 75.90 75.38 73.98 51.44 52.53 50.50 61.39
FedProx 2020 91.66 77.88 76.01 61.88 35.04 32.13 76.06 76.89 75.38 52.88 52.68 52.58 63.42

CentMoE 2017 57.27 57.27 57.27 51.08 51.08 51.08 74.64 74.64 74.64 51.15 51.15 51.15 58.54
FedMix 2021 88.97 83.30 80.83 61.72 59.67 57.20 76.18 76.25 76.01 52.73 51.54 51.23 67.96
FedJETs 2023 89.54 76.96 79.71 66.65 57.81 55.84 71.90 69.83 69.55 50.12 47.97 48.97 65.40

Fed-MoE 92.11 86.03 82.58 67.62 65.52 60.73 77.56 77.96 78.10 54.11 54.12 53.46 70.83

Table 2: Classification accuracy (%) on FEMNIST, CIFAR-10, SENT-140 and Yelp datasets with Non-IID settings. Vision tasks are shaded in
yellow, and language tasks are in green.

guage tasks in 100-client case. This shows the robustness of
our proposed approach in Non-IID scenarios with numerous
clients. The key advantage lies in our expertise dispatching
mechanism, which dynamically considers the model capacity
of each client to enable more effective aggregation. This con-
trasts with the direct aggregation of gate and expert models
employed by FedMix and FedJETs.
Varying reserved data size. We vary the server reserved
data size |Dr| and report the corresponding accuracy of Fed-
MoE. For FEMNIST, the reserved data of sizes |Dr| =
320/640/1280 yield accuracy of 82.86, 82.91, 86.03. For CI-
FAR, sizes |Dr| = 250/500/1000 yield 55.79, 63.31, 65.52.
This indicates that a reasonably reserved dataset is necessary
for training gating module.

5.4 Ablation Studies
Due to the time and computation budget, the following abla-
tions are carried on with 50-client setting.
Server MoE size. We further study how the number of
routed-experts at server side affects the performance. Table 3
shows that Fed-MoE achieves the best performance (86.03%)
with a moderate 5-Exp MoE. In contrast, though Avg-MoE im-
proves as more experts participate in the training, the overall
improvement effect is very limited, and still under-performs
5-Exp Fed-MoE. This indicates the effectiveness of expertise
dispatching of Fed-MoE.

Server MoE 5-Exp 10-Exp 20-Exp 30-Exp

Avg-MoE 82.78 82.83 83.01 82.92
Fed-MoE 86.03 84.77 85.46 85.07

Table 3: Ablation of the number of server experts.

Multi-task training procedures. We examine the effective-
ness of the proposed gating entropy (GEnt) loss in Eq.(8) in
training objective, as well as client synchronization mecha-
nism in Eq.(13) in Table 4. We observe that the inclusion of
gating entropy (+GEnt) alone leads to a slight increase in per-
formance (0.5% for FEMNIST and 0.8% for CIFAR), while
client synchronization (+Sync) alone results in a performance
boost of 3.4% and 2.6%. Combining Sync and GEnt together
yields a huge improvement of 8.0% and 4.2%. The rationale

is that GEnt encourages specialization of each server expert,
while Sync creates a unified data space across all clients. By
leveraging both, server experts can specialize appropriately
in tasks within the global data space, thereby improving their
effectiveness, particularly in Non-IID case.

Fed-MoE variants FEMNIST CIFAR
w/o GEnt & Sync 78.04 61.27
+GEnt 78.57 (+0.5) 62.07 (+0.8)
+Sync 81.48 (+3.4) 63.94 (+2.6)
+GEnt+Sync (Fed-MoE) 86.03 (+8.0) 65.52 (+4.2)

Table 4: Ablation of multi-task training.

Weight of Gating Entropy. We study how the weight β of
GEnt loss of Eq.(9) affects accuracy and explanability. We
observe in Table 5 that a moderate weight β = 10−3 of GEnt
achieves the best accuracy of 65.52% on CIFAR, better than
the model without using GEnt (63.94%) or with a tiny weight
10−4 (64.25%). Also, increasing weight to 10−2 and 10−1

decreases the accuracy. This is because a larger GEnt increases
the specificity of each expert, but reducing the versatility of
the ensemble experts.

GEnt weight w/o 10−4 10−3 10−2 10−1

Fed-MoE 63.94 64.25 65.52 63.14 62.60

Table 5: Ablation of gating entropy weight β in Eq.(9).

We visualize the gating distribution over each server expert
in Fig. 3. In left heat-map, setting a large gating entropy
weight of β = 10−1 obviously makes the gating sparse. Each
expert specifies to one certain digit, e.g., the gating module
sends over 60% label “1” (2nd column) and label “2” (3nd
column) to expert-4. With a smaller β = 10−3 as the right
heat-map shows, the gating module assigns soft weights to
more experts for a same class. It further illustrates that β =
10−3 achieves a balance between specificity and versatility,
distributing the gating more evenly across multiple experts
while still maintaining strong accuracy.

Cls-0 1 2 3 4 5 6 7 8 9

expert 1

expert 2

expert 3

expert 4

expert 5
Cls-0 1 2 3 4 5 6 7 8 9

expert 1

expert 2

expert 3

expert 4

expert 5
0.0

0.2

0.4

0.6

Figure 3: Gating heat-maps reveals each expert (row) specifies certain
classes (col.), with left β = 10−1 and right β = 10−3.

Inference with Top-L active routed experts. Table 6 shows
that on both FEMNIST and CIFAR, using Top-1 routed expert
achieves the highest 86.03% and 65.52% accuracy, respec-
tively. In contrast, using Top-5 would lower the accuracy,
while costing 5 times computations. Since each expert special-
izes in certain classes, activating more irrelevant experts can
lead to confusion in the final outcomes. This aligns with our
practice of using gating entropy to diversify experts.

Top-L 1 2 3 5
FEMNIST 86.03 84.49 82.76 84.73

CIFAR 65.52 65.50 65.16 64.98

Table 6: Ablation of Top-L routed experts in inference.

Comparison with MoE baselines w/o dynamic update.
We study the effectiveness of dynamic update of server ex-
perts, as elaborated in Sec. 4.2. We build the following MoE
variants. Cent-MoE trains a centralized 5-Exp MoE only with
the server reserved set. Avg-MoE [Reisser et al., 2021] (a.k.a
FedMix) has five clients, each equipped with a 2-Exp MoE.
Avg-MoE aggregates client models into a 5-Exp MoE server
model with FedAvg. Anchor-MoE adopts FedJETs [Dun et al.,
2023] by configuring a 1-Exp model for each of the 5 anchor
clients. The server has a 5-Exp MoE. For each FL round, all 5
anchor clients as well as 5 randomly chosen ordinary clients
are used to update server MoE. We show results in Table 7.

Avg-MoE Cent-MoE Anchor-MoE Fed-MoE
2-Exp 5-Exp 5-Exp 5-Exp

FEMNIST 82.60 57.27 75.88 86.03
CIFAR 59.67 51.08 57.81 65.52

Table 7: Centralized MoE and parameter averaging MoE.

Fed-MoE outperforms other models due to its dynamic up-
date of the server gate instead of relying solely on aggregation
from clients. Cent-MoE performs the worst as it only uti-
lizes server reserved data. Avg-MoE ranks the second, as it
aggregates all client MoEs but lacks client-to-server match-
ing. Anchor-MoE ranks behind Fed-MoE, as it restricts itself
to a fixed correspondence between client and server experts,
thereby limiting its performance.

Comparison with heterogeneous method. We further
compare with FedRolex [Alam et al., 2022], a dynamic
subnetwork-based FL method, under 100 clients setup. Fe-
dRolex achieves 45.50% accuracy, which is significantly lower

than our Fed-MoE (60.73%). This demonstrates that even dy-
namic subnetwork methods struggle under extreme non-IID
and large-scale FL settings.

Effect of main-expert. We study how the number of main-
experts affects the performance. Table 8 shows that Fed-
MoE achieves the best performance on both FEMNIST and
SENT140 with just 1-Exp MoE, compared with using no main
expert and 2/3-main experts.

0-Main 1-Main 2-Main 3-Main

FEMNIST 81.05 86.03 80.61 83.29

SENT140 75.11 77.96 77.11 76.88

Table 8: Ablation of the number of server experts.

Non-IID server reserved data Dr. We let 60% of the server
data concentrate on one class, with the rest uniformly dis-
tributed. Fig. 4 shows an accuracy gap of about 2-3% between
IID and Non-IID scenarios for both Fed-MoE and FedMix,
and less 1% in AUC. The F1 score reveals a gap of 6% on
Yelp, whereas it is only 1.8% on SENT140, for our Fed-MoE.
Otherwise, Fed-MoE showed a slight advantage than FedMix
in AUC metrics on both datasets.

acc F1 AUC
40

50

60

70

80

90

100

Sc
or

es

51.09
47.51

84.92

+3.03 +6.01

+0.02

48.34 49.06

82.46

+3.20 +1.80

+0.71

75.61 75.09

86.42
+2.35 +2.85

+0.18

73.70 73.16

83.67
+2.55 +3.05

+0.47

FedMoE Non-IID (Yelp)
FedMix Non-IID (Yelp)
FedMoE Non-IID (SENT140)
FedMix Non-IID (SENT140)

Figure 4: The comparison of Acc, F1, AUC of Fed-MoE and FedMix
on SENT140 and Yelp.

6 Conclusion
We introduce an efficient asymmetric FL scheme that effi-
ciently aggregates compact client models with a server-side
MoE composed of main experts and routing experts, show-
casing superior performance across visual and language tasks.
Our dynamical expert gating and updating mechanisms help
establish diverse and capable server MoE from client experts.
We validated our approach on billion-scale MoE systems with
large models, extending its applicability to tasks like image
and text classification. Detailed ablation studies confirm its
efficiency in convergence and communication performance.

Acknowledgments
This work is supported by the GuangDong Basic and Applied
Basic Research Foundation (2024A1515011650) and the Na-
tional Natural Science Foundation of China (62106156). We
thank all reviewers for constructive suggestions.

Contribution Statement
This work was a collaborative effort by all authors. Jingang
Jiang† and Yanzhao Chen† contributed equally to this study
and are designated as co-first authors. Chenyou Fan∗ served as
the corresponding author and is responsible for all academic
correspondence regarding this manuscript.

References
[Alam et al., 2022] Samiul Alam, Luyang Liu, Ming Yan,

and Mi Zhang. Fedrolex: Model-heterogeneous federated
learning with rolling sub-model extraction. In Advances in
Neural Information Processing Systems, volume 35, pages
29677–29690, 2022.

[Caldas et al., 2018] Sebastian Caldas, Peter Wu, Tian Li,
Jakub Konecný, H. Brendan McMahan, Virginia Smith,
and Ameet Talwalkar. Leaf: A benchmark for federated
settings. arXiv preprint arXiv:1812.01097, 2018.

[DeepSeek-AI, 2024] DeepSeek-AI. Deepseek-v2: A strong,
economical, and efficient mixture-of-experts language
model, 2024.

[Devlin et al., 2018] Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[Diao et al., 2021] Enmao Diao, Jie Ding, and Vahid Tarokh.
Heterofl: Computation and communication efficient feder-
ated learning for heterogeneous clients, 2021.

[Du and others, 2022] Nan Du et al. Glam: Efficient scaling
of language models with mixture-of-experts. In ICML,
2022.

[Dun et al., 2023] Chen Dun, Dimitrios Dimitriadis, et al.
Fedjets: Efficient just-in-time personalization with feder-
ated mixture of experts. arXiv preprint arXiv:2306.08586,
2023.

[Fan et al., 2022] Chenyou Fan, Junjie Hu, and Jianwei
Huang. Private semi-supervised federated learning. In
IJCAI, pages 2009–2015, 2022.

[Fedus et al., 2022] William Fedus, Barret Zoph, and Noam
Shazeer. Switch transformers: Scaling to trillion param-
eter models with simple and efficient sparsity. JMLR,
23(1):5232–5270, 2022.

[Guo et al., 2021] Binbin Guo, Yuan Mei, Danyang Xiao, and
Weigang Wu. Pfl-moe: personalized federated learning
based on mixture of experts. In Web and Big Data: 5th
International Joint Conference, 2021.

[Hong et al., 2022] Junyuan Hong, Haotao Wang, Zhangyang
Wang, and Jiayu Zhou. Efficient split-mix federated learn-
ing for on-demand and in-situ customization. In ICLR,
2022.

[Isaksson et al., 2022] Martin Isaksson, Edvin Listo Zec,
Rickard Cöster, Daniel Gillblad, and Šarūnas Girdzijauskas.
Adaptive expert models for personalization in federated
learning. arXiv preprint arXiv:2206.07832, 2022.

[Itahara et al., 2023] Sohei Itahara, Takayuki Nishio,
Yusuke Koda, Masahiro Morikura, and Koji Yamamoto.
Distillation-based semi-supervised federated learning for
communication-efficient collaborative training with non-iid
private data. IEEE Transactions on Mobile Computing,
22(01):191–205, 2023.

[Jacobs et al., 1991] Robert A Jacobs, Michael I Jordan,
Steven J Nowlan, and Geoffrey E Hinton. Adaptive mix-
tures of local experts. Neural computation, 3(1):79–87,
1991.

[Jiang et al., 2024a] Albert Q Jiang, Alexandre Sablayrolles,
et al. Mixtral of experts. arXiv preprint arXiv:2401.04088,
2024.

[Jiang et al., 2024b] Jingang Jiang, Haiqi Jiang, Yuhan Ma,
Xiangyang Liu, and Chenyou Fan. Low-parameter feder-
ated learning with large language models. In Web Informa-
tion Systems and Applications, pages 319–330, 2024.

[Jordan and Jacobs, 1994] Michael I Jordan and Robert A Ja-
cobs. Hierarchical mixtures of experts and the em algorithm.
Neural computation, 6(2):181–214, 1994.

[Karimireddy and others, 2020] Sai Praneeth Karimireddy
et al. Scaffold: stochastic controlled averaging for fed-
erated learning. In ICML, 2020.

[Krizhevsky, 2009] Alex Krizhevsky. Learning multiple lay-
ers of features from tiny images. 2009.

[Lepikhin et al., 2020] Dmitry Lepikhin, HyoukJoong Lee,
et al. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint
arXiv:2006.16668, 2020.

[Li and others, 2019] Tian Li et al. Federated learning: Chal-
lenges, methods, and future directions. arXiv preprint
arXiv:1908.07873, 2019.

[Li et al., 2020] Tian Li, Anit Kumar Sahu, Manzil Zaheer,
Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Fed-
erated optimization in heterogeneous networks. Proceed-
ings of Machine learning and systems, 2:429–450, 2020.

[Lin et al., 2024] Bin Lin, Li Yuan, et al. Moe-llava: Mixture
of experts for large vision-language models. arXiv preprint
arXiv:2401.15947, 2024.

[Liu et al., 2023] Xiangyang Liu, Tianqi Pang, and Chenyou
Fan. Federated prompting and chain-of-thought reasoning
for improving llms answering. In International Confer-
ence on Knowledge Science, Engineering and Management,
pages 3–11. Springer, 2023.

[McMahan et al., 2017] H. Brendan McMahan, Eider Moore,
Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from
decentralized data. In AISTATS, 2017.

[Mustafa et al., 2022] Basil Mustafa, Carlos Riquelme, Joan
Puigcerver, Rodolphe Jenatton, and Neil Houlsby. Multi-
modal contrastive learning with limoe: the language-image
mixture of experts. NeurIPS, 35:9564–9576, 2022.

[Park and Ko, 2024] JaeYeon Park and JeongGil Ko. Fedhm:
Practical federated learning for heterogeneous model de-
ployments. ICT Express, 10(2):387–392, 2024.

[Reisser et al., 2021] Matthias Reisser, Christos Louizos, Ef-
stratios Gavves, and Max Welling. Federated mixture of
experts. arXiv preprint arXiv:2107.06724, 2021.

[Sattler et al., 2019] Felix Sattler, Simon Wiedemann, Klaus-
Robert Müller, and Wojciech Samek. Robust and
communication-efficient federated learning from non-iid
data. IEEE TNNLS, 2019.

[Shazeer et al., 2017] Noam Shazeer, Azalia Mirhoseini,
Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hin-
ton, and Jeff Dean. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. arXiv preprint
arXiv:1701.06538, 2017.

[Wei and others, 2020] Kang Wei et al. Federated learning
with differential privacy: Algorithms and performance anal-
ysis. IEEE Transactions on Information Forensics and
Security, 2020.

[Wu et al., 2020] Qiong Wu, Kaiwen He, and Xu Chen. Per-
sonalized federated learning for intelligent iot applications:
A cloud-edge based framework. IEEE Computer Graphics
and Applications, 2020.

[Xin et al., 2020] Bangzhou Xin, Wei Yang, Yangyang Geng,
Sheng Chen, Shaowei Wang, and Liusheng Huang. Private
fl-gan: Differential privacy synthetic data generation based
on federated learning. In ICASSP, 2020.

[Zec et al., 2020] Edvin Listo Zec, John Martinsson, Olof
Mogren, Leon René Sütfeld, and Daniel Gillblad. Fed-
erated learning using mixture of experts. arXiv preprint
arXiv:2107.06724, 2020.

[Zhang et al., 2015] Xiang Zhang, Junbo Zhao, and Yann Le-
Cun. Character-level convolutional networks for text clas-
sification. Advances in neural information processing sys-
tems, 28, 2015.

[Zhao et al., 2018] Yue Zhao, Meng Li, Liangzhen Lai,
Naveen Suda, Damon Civin, and Vikas Chandra. Fed-
erated learning with non-iid data. arXiv preprint
arXiv:1806.00582, 2018.

[Zuo et al., 2021] Simiao Zuo, Jianfeng Gao, et al. Tam-
ing sparsely activated transformer with stochastic experts.
arXiv preprint arXiv:2110.04260, 2021.

	Introduction
	Related Work
	Task Description and FL Preliminaries
	Our Fed-MoE Approach
	Stage-A: Local client training and uploading
	Stage-B: Server experts and gate update
	Step-0: Probe client experts' responses
	Step-1: Get server gating responses
	Step-2: Get server-client correlation
	Step-3: Update server experts with moving FedAvg
	Step-4: Update server gating module

	Stage-C: Client experts synchronization

	Experiments
	Fed-MoE and Baselines for comparison
	Implementation details
	Results with Various Datasets and Settings
	Ablation Studies

	Conclusion

