
Trajectory Prediction with Contrastive Pre-training and
Social Rank Fine-tuning

Chenyou Fan1[0000−0002−9835−8507], Haiqi Jiang1, Aimin
Huang[0000−0001−9895−3202], and Junjie Hu2[0000−0002−1911−4361]

1 South China Normal University, Guangdong, China
fanchenyou@scnu.edu.cn

2 Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRs), Shenzhen,
Guangdong, China

hujunjie@cuhk.edu.cn

Abstract. This paper focuses on the accurate prediction of pedestrian trajecto-
ries in scenarios where individuals walk alone or in social groups, and sometimes
alter their paths to avoid collisions. While previous work has improved backbone
neural networks to model individual motion patterns, few studies have explicitly
addressed the consistency of internal motion patterns or properness of external
interactions. To address this, we propose a unified framework consisting of a
Contrastive History-Prediction (CHIP) module and a Differentiable Social Inter-
action Ranking (DSIR) module. The CHIP module utilizes unsupervised con-
trastive loss to optimize predicted motion patterns consistent with observations,
while the supervised DSIR module ensures predicted interactions are compatible
with realistic positions. Our analysis and numerical studies demonstrate the ef-
fectiveness of our approach, which achieves a 5-10% improvement in positional
accuracy and a 3-7% boost in interactive properness. We provide comprehensive
visualizations of anticipated trajectories with temporal interactive scores across
various scenarios.

Keywords: Trajectory Prediction · Contrastive Learning · Social Interaction.

1 Introduction

Predicting the future trajectories of autonomous vehicles is a critical task for safe nav-
igation in dense urban traffic. Recent studies have made substantial progress in devel-
oping advanced deep-learning (DL) models to explore human movement patterns, such
as using LSTMs [1], GANs [9, 20], Transformers [30], and GCNs [17, 23]. To model
human interactions, these studies have proposed to aggregate neighbors’ features with
pooling [1, 15, 31], weighted averaging [17, 23], or multi-head attention [30].

In this study, instead of proposing new DL architectures, we focus on two funda-
mental aspects of trajectory prediction: the consistency of human movement patterns
and the properness of human interactions. To this end, we propose a unified, model-
agnostic training procedure to explicitly optimize motion consistency and quantify in-
teraction properness. This approach allows us to better explain the interactive mecha-
nisms implied by existing sophisticated DL models and to quantify the properness of
the predicted social interactions.
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Fig. 1: Demo of pedestrian trajectory prediction. In a same social group, P1 and P2 keep
close along the path. P3 is out-group w.r.t. P1 and P2, approaching at some future steps.

Human behaviors have been observed to exhibit stability and predictability, as peo-
ple often follow consistent patterns in their movements. To investigate this phenomenon,
this study focuses on examining the internal consistency of human behaviors. Our ap-
proach involves optimizing the similarity between observed motion patterns and pre-
dicted future patterns for each individual. This is achieved through contrastive learning,
which associates a person’s historical pattern with their corresponding future pattern.
The proposed learning method, named Contrastive HIstory-Prediction (CHIP), aims to
unsupervisedly ensure that predicted trajectories align with previously observed pat-
terns. To accomplish this, motion embeddings are extracted from historical and future
time steps for all individuals in the scene.

Humans are innately social beings who adjust their actions to facilitate appropriate
social interactions. Our study identifies two significant types of pedestrian interactions,
as in Fig. 1. The first type is called in-group, where individuals from the same social
group tend to walk together and maintain a close proximity. The second type is out-
group, where individuals walk separately but anticipate potential collisions in the near
future. Consequently, they modify their trajectories using complex dynamics to main-
tain a comfortable social distance. Thus, the second crucial aspect of this research is to
explicitly model the external social properness that dictate human behaviors.

In order to capture the external social properness of pedestrian behavior, we utilize a
pairwise potential energy calculation based on the relative distance between individuals
over time. We then create a spatial-temporal ranking of these potentials for all person
pairs, reflecting the varying intensities of interactions. This ranking is demonstrated in
Fig. 1, where at step t1, the ranking of (P1, P3) is higher than that of (P2, P3) as they
approach, with the order reversing at t2. During training, the actual ranking is obtained
from the ground-truth trajectories. The discrepancy between the predicted and actual
ranking is used to determine the properness of predicted interactions, informing the
design of a ranking loss which is optimized for the model end-to-end. This process is
called Differential Social Interaction Ranking (DSIR), which aims to accurately capture
the progression of social potentials in a supervised manner.

In summary, we propose explicitly modeling both internal and external factors of
human behaviors as multi-task learning objectives. Notably, our CHIP and DSIR mod-
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ules are both model-agnostic and parameter-free. We will demonstrate they can inte-
grate into existing backbones seamlessly and improve prediction accuracy steadily.

In summary, the main contributions of our work include:

– We propose to learn internal movement and external interactive patterns to depict
human behaviors in dense traffic;

– We apply unsupervised contrastive learning process to associate observed movements
with predicted trajectories for pre-training;

– We design a ranking scheme to describe the dynamic interactions with pairwise po-
tentials based on pedestrians’ trajectories, and integrate into model optimization in
an end-to-end manner;

– Our approach significantly outperforms existing methods by 5-10% in positional ac-
curacy and 3-7% in interactive properness.

2 Related Work

Trajectory Prediction. In Autonomous Driving (AD) technical stack, trajectory predic-
tion is an important perception task which aims to track mobile agents such as pedestri-
ans and vehicles. Recent approaches commonly use RNNs [1, 9, 13, 27], GANs [9, 20]
or GNNs [17, 23] to encode the history and decode to future trajectories. Recent AD
studies [5, 7, 32] also utilize additional high-definition maps to refine the generation of
future coordinates.

Social Interaction. Social-LSTM [1] modeled the interactions by pooling neigh-
boring agents’ features. Social-Attention [27] utilized the attention mechanism [26] to
model the importance of interactions. PeekFuture [15] additionally modeled the person-
scene and person-object interaction with visual contexts. STGCNN [17] built a spatio-
temporal graph of the scene with edge weights as the relative distance. SGCN [23] fur-
ther imposed sparsity constrains on interactions and prune non-influential ones. M2I [25]
classified agent relations with heuristics. However, they either implicitly learned the in-
teractions or assumed fixed relations without considering the dynamics. We will con-
sider the dynamic interactions by ranking their potentials temporally. Group detection
was extensively studied [16, 21, 24] as a supervised classification task. However, these
approaches become inadequate when handling datasets that lack group labels.

Contrastive learning with different modalities. CLIP [19] model shows con-
trastive learning effective in large-scale visual concept pre-training. Extended tasks of
contrastive learning include object detection [22], text-image retrieval [4], and text-
image segmentation [28], etc. In this study, we build a movement pattern embedding
space in which the distance of historical and future patterns of a same person is min-
imized. We formulate our Contrastive History-Future learning as unsupervised pre-
training.

3 Our Approach

We begin by outlining the notations and definitions associated with trajectory prediction
tasks, followed by our approach description.
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Notations. Let Th be number of historical steps, and Tf be subsequent future steps.
For a scene with N persons, their 2-D coordinates are denoted as Xh in history and
Xf in future, respectively, as:

Xh = {Xh
i }Ni=1 , s.t.X

h
i = {(xti, yti)}

Th
t=1 ;

Xf = {Xf
i }

N
i=1 , s.t.X

f
i = {(xti, yti)}

Th+Tf

t=Th+1 .
(1)

Let G denote a trajectory prediction model. G takes the N -person coordinates Xh

as global context of the history and predicts the bi-Gaussian positional parameters (e.g.,
mean and variance of the XY-coordinates) for Tf future steps such as

Z = {zi ∈ RTf×5}Ni=1 ,

with zi = {(µt
x,i, µ

t
y,i, σ

t
x,i, σ

t
y,i, ρ

t
i)}

Th+Tf

t=Th+1 .
(2)

For each person i of total N persons in the scene, we extract its D-dim historical
feature hi and its decoded future feature fi as motion embeddings as:

H = {hi ∈ RD}Ni=1 , F = {fj ∈ RD}Nj=1 . (3)
The collective outputs ofG by Eq. 2 and 3 include the parameterized future predic-

tions Z, historical featuresH and future features F , as:
Z,H,F ← G(Xh) . (4)

Depending on the backbone chosen for G, H and F can be adaptively collected
from the last (or pooled) hidden output of an LSTM, GCN, or Transformer.

3.1 Contrastive History-Prediction Learning

We introduce our Contrastive HIstory-Prediction (CHIP) learning to ensure the internal
motion consistency of human behaviours. With historical motion embedding H and
future embedding F of Eq. (3), we compute the dot-product for each (i, j) person pair
such asQ = {qij = hi · fj}Ni,j=1.

The concept of internal motion consistency dictates that the expected movement
sequence of an individual, denoted as person i, ought to bear greater resemblance to the
actual observed pattern compared to the rest of the individuals within the environment.

Consequently, every value along the diagonal of the matrix, represented by qii, must
possess a higher magnitude compared to other entries in the corresponding row and
column. Formally, for i = 1, ..., N , we have

qi,i > qi,j ∧ qi,i > qk,i, ∀j, k ̸= i . (5)

To impose above constraints, we formulate our CHIP learning objective as an aux-
iliary classification task such as

Lchip(Q) =− 1

2N

N∑
i=1

(
log

eqii∑N
j=1 e

qij
+ log

eqii∑N
k=1 e

qki

)
, (6)

in which qii gets maximized as a logit. As Q depends on feature embeddings from
model outputs, we can optimize the model by minimizing Lchip with standard SGD.

Notably, CHIP learning is unsupervised and can serve as a multi-task objective in
model training. We describe the details in Sec. 3.4.
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3.2 Differentiable Social Interaction Ranking

This study delves into explicitly modeling the properness of social interactions. To
achieve this goal, we propose a novel Differentiable Social Interaction Ranking (DSIR)
module, which enables the supervised optimization of predicted interactions among all
participants to align with their actual positions.

(a) Walk together (in-group interaction).

(b) Walk and cross (out-group interaction).

(c) Interaction potentials (highest are highlighted).

Fig. 2: (a) In-group interaction with high potentials. (b) Out-group interactions with
varied potentials at different steps. (c) Ranking of pairwise potentials. The interactions
with highest potentials over the time are highlighted in dashed red box.

Observations. We highlight two important types of person interactions based on
analysis of realistic data. Specifically, Fig. 2a illustrates the in-group interaction char-
acterized by individuals walking in close proximity (i.e., less than 1 meter) as a same
social group. Conversely, Fig. 2b captures the out-group interaction where two individ-
uals walk independently but take measures to avoid collision by dynamically adjusting
their walking paths while maintaining a comfortable social distance. This finding offers
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insight into social dynamics and highlights the importance of considering various forms
of interpersonal interactions in modeling pedestrian behavior.

We first define the interaction intensity of a paired persons (i, j) with the classical
Gaussian potential function [2, 6, 29], depending on their relative distance dij as

ψ(i, j) = exp
(
−
d2ij
2σ2

)
∈ (0, 1], ∀i ̸= j , (7)

in which σ is a constant social distance, dij is computed based on their positions, and
ψ is symmetric (ψ(i, j) = ψ(j, i)). We omit ψ(i, i) as we care about interactions with
different persons. Thus, in a scene with N ≥ 0 persons, we have M = N(N − 1)/2
unique potentials to consider.

Social Descriptors. We propose to describe social interactions in a global view by
pairwise potentials of pedestrians depending on their relative distances. The potential
ranking over each step provides rich information about the temporal dynamics of human
interactions. Fig. 2c shows a 3-person scene with complex interactions, i.e., P1 and P2
are in-group while P3 is out-group w.r.t to P1 and P2. Moreover, P3 is expected to
interact with P1 and P2 by crossing their paths at subsequent steps. Thus, P1 and P2
need to plan their routes to maintain their intimacy while also keeping a polite distance
from P3. As reflected in their ranks, ψ(1, 2) remains consistently high across all steps,
while ψ(1, 3) and ψ(2, 3) reach their peaks at t1 and t2, respectively, before dropping
off in later steps.

To further examine the complexity and appropriateness of human interactions, we
propose to learn the predicted ranking of pairwise potentials using trajectory predictions
and compare them with the actual order based on the ground truth data.

Task formulation. Given predicted pairwise potentials, we now formulate the task
of ranking them increasingly as an optimization task with a differentiable solution. Thus
we can integrate it into our learning procedure.

Let ψ = [ψ1, ..., ψM ]⊤ ∈ RM be a list of M unique pairwise potentials in column
form. LetM = {1, 2, ...,M} and 1M be an all-ones vector of dimension M .

We define an M -element index array y as

y = [yj =
j

M
]Mj=1 =

1

M

[
1, · · · , j, · · · ,M

]⊤
, (8)

in which yj ∈ (0, 1] as similar as potential ψ, making the following sorting operations
numerically stable.

Let P = {pij}Mi,j=1 be an M ×M permutation matrix. P is binary in which each
row or column only has one element of 1, otherwise 0. The 1-element pij ranks j-th
element to i-th rank. A sorting permutation matrix P ∗ permutes ψ in increasing order
as ψP∗

as:
ψP∗

= P ∗ψ = [ψP∗
1 , ..., ψP∗

M ]⊤, ∀i < j, ψP∗
i < ψP∗

j . (9)

Sorting process is usually non-differentiable which requires comparing and swap-
ping elements, e.g., QuickSort. We propose to formulate our potential ranking task as a
differentiable learning objective and optimize it iteratively.

We first prove that a proper sorting permutation can be obtained by minimizing the
following cost function.
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Lemma 1. Let y = [i/M ]Mi=1 be the index array. Given a vector ψ of M unique ele-
ments, the sorting permutation P ∗ is the unique solution (out of all permutations) which
minimizes the following cost

L(ψP |y) =
M∑
i=1

(yi − ψP
i )2 . (10)

We can perform proof by contradiction by supposing that there exists some non-
sorting permutation P ′ (P ′ ̸= P ∗) which also minimizes Eq. (10). Then we can show
if we further swap the non-sorted pairs we can further lower the cost.

Lemma 1 shows that sorting can be formulated as finding the optimal permutation
that minimizes Eq. (10). Based on this, we construct a cost matrix Cψy as

Cψy =
{
cij = (yj − ψi)

2
}M

i,j=1
∈ RM×M . (11)

We formulate sorting operation as a relaxed integer programming as follows:

P̂ ∗ = argmin ⟨P ,Cψy⟩ − λH(P ) ,

s.t. P ≥ 0 , P1M = 1M , P⊤1M = 1M ,
(12)

in which H(P ) = −
∑

i,j Pi,j logPi,j is the entropy term.
The constraints of Problem (12) only limit each row and column of P sums to one

and be positive, relaxing the requirement of a binary permutation matrix. This allows
soft assignment of ranks, e.g., Pij is interpreted as the weight of assigning element ψj

to i-th rank.
The solution P̂ ∗ of Problem (12) can be solved in iterative and differentiable way [3].

Lemma 2. For an M ×M cost matrixC, solving Problem (12) is strictly convex such
that there exists a unique minimizer P ∗ which has the form of P ∗ = XAY , where
A = exp(−λC) whileX,Y ∈ RM×M

+ are both non-negative diagonal matrices which
are unique up to a multiplicative factor [3] , which can be efficiently solved with the
differentiable Sinkhorn algorithm [3].

Pairwise Ranking Loss. We can estimate the ranks of pairwise potentials with
Task 12 as R̂(ψ) = {r̂i}Mi=1 = M · P̂ ∗⊤y. In training stage, we can obtain the actual
pairwise potentials ϕ based on true positions Xf , and sort to get their actual ranks
R(ϕ) = {ri}Mi=1 as ground truths.

By comparing the predictions with the ground truths, we develop the social ranking
loss Ldsir to penalize inconsistent pairwise orders in a supervised manner such that

Ldsir(R̂|R) = 1

M2

M∑
i=1

M∑
j=1

max(0,−(ri − rj)(r̂i − r̂j)) . (13)

3.3 Bi-Gaussian Regression Loss

We follow previous studies [1, 8, 9, 23] to optimize the predicted trajectories with the
bi-Gaussian distribution loss. Let the true future positions be Xf = (x, y) and the
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parameterized model predictions be Z = (µx, µy, σx, σy, ρ) as in Eq. (2). We omit
subscript i and t for simplicity. The bi-Gaussian distribution loss follows

LbiG(Z|Xf ) =
1

2πσxσy

√
1− ρ2

exp
( −1

2(1− ρ2)[ (x− µx)
2

2σ2
x

+
(y − µy)

2

2σ2
y

− 2ρ(x− µx)(y − µy)

σxσy

])
,

(14)

which penalizes deviations of predicted (µx, µy) from the ground-truth (x, y) as well
as large variances.

3.4 Two-Stage Multi-task Training Objective

In summary, we can optimize the model by jointly minimizing the bi-Gaussian regres-
sion loss in Eq. (14), CHIP learning loss in Eq. (6) and DSIR loss in Eq. (13) as

Lfinal = LbiG + α1L
chip + α2L

dsir , (15)

in which α1, α2 are scaling factors. Specially, we propose a two-stage best practice of
end-to-end model training with the multi-task objective Lfinal with standard SGD.

In Stage-1 (Pre-training), we minimize Lpre = LbiG + α1L
chip for fast conver-

gence, i.e., omitting DSIR loss. In Stage-2 (Fine-tuning), we use the full Lfinal in
Eq. (15) for fine-tuning trajectory predictions with interaction-aware DSIR loss.

4 Evaluation Metrics

We describe two standard metrics for trajectory prediction, then propose our novel
Intimacy-Politeness Score to fully evaluate the properness of social interactions.

4.1 Standard ADE and FDE

ADE and FDE are two standard error metrics which measure the deviations from pre-
dicted positions to the ground truths. Let (xi,t, yi,t) be real position of person i at
step t, and (x̂i,t, ŷi,t) be the predicted position. Their L2-distance is defined as eti =√
(x̂ti − xti)2 + (ŷti − yti)2. The Average Displacement Error (ADE) [18] calculates

the L2-distance between predicted future trajectory and ground truth, averaged over
all future steps and all N persons in the scene as 1

N ·Tf

∑N
i=1

∑Th+Tf

t=Th+1 e
t
i . The Final

Displacement Error (FDE) [1] computes the L2-distance between the predicted posi-
tion and actual position at the final step as 1

N

∑N
i=1 e

Th+Tf

i .

4.2 Surrogate Social Distance Accuracy (SDA)

Public datasets often do not contain labels for social groups, as annotating social inter-
actions can be a time-consuming process.

To address this issue, we suggest using a Social Distance Accuracy (SDA) scoring
function to evaluate the quality of social interactions in a weakly-supervised manner.
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The SDA method uses the pedestrians’ predicted distances and compares them with
weakly annotated group labels that are based on ground-truth distances. Our research
demonstrates that SDA serves as a reliable surrogate measure for assessing the accuracy
of trajectory predictions.

Let σ be the minimal distance of social politeness. Let di,j,t be the actual relative
distance between individuals i and j at a given time t, and let d̂i,j,t be the predicted
distance. We construct an adaptive in-group distance upper-bound d+i,j,t and out-group
distance lower-bound d−i,j,t, based on di,j,t and σ. These two bounds define the accept-
able social distance range in unsupervised manner without realistic group labels.

We choose a social distance threshold σ as the minimal distance of social politeness.
Then we can establish the in-group person triplet set DIn and out-group person triplet
set DOut in unsupervised manner as follows:

DIn =
{
(i, j, t)

∣∣d̄i,j,t ≤ σ ∧ di,j,t ≤ σ
}
,

DOut =
{
(i, j, t)

∣∣d̄i,j,t > σ ∧ di,j,t > σ
}
.

(16)

We construct an adaptive range [d−i,j,t, d
+
i,j,t] based on the actual distance di,j,t with

τ ∈ (0, 1) such that
d+i,j,t = (1 + τ) · di,j,t and d−i,j,t = (1− τ) · di,j,t . (17)

Now we design the hinge score functions sI and sP to measure intimacy and po-
liteness separately, as follows:

sIi,j,t = trunc

(
d+i,j,t − d̂i,j,t

d+i,j,t − di,j,t
, 0, 1

)
, ∀(i, j, t) ∈ DIn ,

sPi,j,t = trunc

(
d̂i,j,t − d−i,j,t

di,j,t − d−i,j,t
, 0, 1

)
, ∀(i, j, t) ∈ DOut ,

(18)

in which trunc(·, 0, 1) clips the value within [0, 1]. Concretely, sI rewards a predicted
d̂i,j,t to be smaller than d+i,j,t for in-group triplets in DIn, while sP rewards d̂i,j,t to be
larger than d−i,j,t for out-group triplets in DOut.

Based on the social range, we design a hinge score functions sI and sP to measure
intimacy and politeness separately, as Eq. 16 shows. In summary, SI lessens when over-
estimating in-group distance d1, while SP lessens when under-estimating out-group
distance d2. We use the combined SI and SP as the Social Distance Accuracy (SDA).

5 Experiments

We first introduce datasets and benchmark models of existing works. Then we report the
performance and carry out ablation studies to show the effectiveness of our methods.

Datasets. We use two widely compared public pedestrian trajectory datasets, i.e.,
ETH [18] and UCY [14] to evaluate our methods. In particular, ETH dataset contains
the ETH and HOTEL scenes, while the UCY dataset contains the UNIV, ZARA1, and
ZARA2 scenes. Each data sequence contains observed trajectories extracted from 8
frames (3.2 seconds) and future trajectories in the next 12 frames (4.8 seconds). The
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train/val/test splits are given. Following a standard testing procedure [1,17], we generate
20 random samples from the predicted distribution for each testing trajectory, then we
calculate the minimum ADE and FDE from the predictions to the ground truth. We also
calculate the maximum SDA from all samples as our interactive metric value.

Table 1: Min ADE and FDE results on the benchmark ETH and UCY datasets.
Model Architecture ETH HOTEL UNIV ZARA1 ZARA2 AVG
Vanilla-LSTM [1] LSTM 1.09/2.41 0.86/1.91 0.61/1.31 0.41/0.88 0.52/1.11 0.70/1.52
Social-LSTM [1] LSTM-Pool 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17 0.72/1.54
Social-GAN [9] GAN-Pool 0.87/1.62 0.67/1.37 0.76/1.52 0.35/0.68 0.42/0.84 0.61/1.21
Sophie [20] GAN-Att 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.51/1.15
Social-BiGAT [11] GAN-Att 0.68/1.29 0.68/1.40 0.57/1.29 0.29/0.60 0.37/0.75 0.52/1.07
STGCNN [17] GCN 0.64/1.11 0.49/0.85 0.44/0.79 0.34/0.53 0.30/0.48 0.44/0.75
SGCN [23] GCN-Att 0.63/1.03 0.32/0.55 0.37/0.70 0.29/0.53 0.25/0.45 0.37/0.65

SGCN+CHIP Ours 0.59/0.92 0.29/0.51 0.38/0.72 0.28/0.49 0.25/0.45 0.36/0.62
SGCN+CHIP+DSIR Ours 0.55/0.86 0.28/0.44 0.37/0.69 0.27/0.46 0.23/0.42 0.34/0.58

5.1 Our approaches and baselines

We construct our learning models based on the state-of-the-art SGCN [23]. SGCN-
CHIP adds our proposed CHIP learning module to SGCN as a multi-task objective for
model regularization. SGCN-CHIP-DSIR utilizes both CHIP and DSIR modules to
boost training in a two-stage manner as in Sec. 3.4.

We compare our method with various existing methods such as Vanilla LSTM [10],
Social-LSTM [1], Social-GAN [9], Sophie [20], Social-BiGAT [12], STGCNN [17]
and SGCN [23].

5.2 ADE and FDE results

We show results evaluated with ADE and FDE (lower is better) in Table 1 and observe
the following trends.

– The best performing SGCN-CHIP-DSIR leads SGCN by 8.1% in ADE (0.34 vs.
0.37) and 10.8% (0.58 vs. 0.65) in FDE relatively, establishing new benchmarks for
pedestrian trajectory prediction.

– With only CHIP (no DSIR), our SGCN-CHIP still outperforms SGCN by 2.7% in
ADE and 4.6% in FDE, showing the effectiveness of contrastive learning for regu-
larizing the model training.

– By additionally performing DSIR, the SGCN-CHIP-DSIR outperforms SGCN-CHIP
by 5.6% in ADE (0.34 vs. 0.36) and 6.5% (0.58 vs. 0.62) in FDE, relatively. This
shows the effectiveness of potential ranking to explore interactive patterns.
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Table 2: SDA results. The higher is the better.
Model ETH HOTEL UNIV ZARA1 ZARA2 AVG
Van.-LSTM [1] 0.456 0.505 0.536 0.460 0.454 0.482
Soc.-LSTM [1] 0.463 0.497 0.544 0.461 0.450 0.483
Soc.-GAN [9] 0.522 0.542 0.581 0.606 0.640 0.578
Sophie [20] 0.692 0.683 0.740 0.735 0.825 0.735
STGCNN [17] 0.732 0.851 0.679 0.875 0.789 0.785
SGCN [23] 0.783 0.848 0.712 0.873 0.831 0.809

SGCN-CHIP 0.816 0.852 0.723 0.886 0.854 0.826
+DSIR 0.832 0.854 0.721 0.891 0.870 0.834

5.3 SDA results

We show results of SDA (higher is better) in Table 2 and observe the following trends.
The best performing SGCN-CHIP-DSIR outperforms original SGCN by 3.1% in SDA
(0.834 v.s. 0.809). Without DSIR, our SGCN-CHIP still leads original SGCN 2.1% over
original SGCN (0.826 v.s. 0.809). STGCNN and SGCN have higher SDA with GCN
backbones. Social-LSTM/-GAN have low SDA due to the ineffective social-pooling.
Vanilla-LSTM has lowest SDA as it ignores interaction learning.

5.4 Ablation study of model adaptivity

(a) ADE (lower is better) (b) SDA (higher is better)

Fig. 3: Ablation studies of model compatibility.

We study whether our CHIP and DSIR learning modules can adapt to existing mod-
els and boost performance boost upon their original designs. We experiment with sev-
eral recent studies: Social-GAN [9], Sophie [20], STGCNN [17] and SGCN [23]. They
cover most existing backbones and social learning methods, including LSTM-GAN-
Pool, LSTM-GAN-Attention, Transformer, GCN, and GCN-Attention, respectively, as
shown in Table 1.
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For each existing model, we build two variants as {MODEL}-CHIP and {MODEL}-
CHIP-DSIR with one or both our proposed modules respectively. We show the perfor-
mance boost in ADE and SDA in Fig. 3.

Fig. 3a shows that for each model except Social-GAN, our CHIP module lowers
ADE by about 3-4%, and CHIP+DSIR together lower ADE by about 6-9%, relative to
the original model. Our modules could improve Social-GAN by a substantial 15-18%,
indicating the importance of regularizing the path generation process with GANs.

Fig. 3b shows that for each model except Social-GAN, our CHIP module can im-
prove SDA about 0.8-4.5%, and CHIP+DSIR together can improve SDA about 1.8-7%.
The improvement on Social-GAN as large as 31%.

Compare Fig. 3a and Fig. 3b, we found that SDA and ADE are generally consistent
over most methods. This indicates that SDA serves as a trustful evaluation metric for
unsupervised social interaction.

In conclusion, our model-agnostic learning modules can integrate into existing mod-
els and possibly future state-of-the-art models to achieve performance boosts readily.

(a) A 3-person scene (left) and pairwise ranking (right).

(b) A multi-group complex scene (left) and pairwise ranking
(right).

Fig. 4: Visualize scene-level potential ranking.

5.5 Visualizations of Ranking

In Fig. 4a, we show a 3-person scene on the left and display their potential ranking
over 8 future steps on the right. We have excluded pair P-(0, 2) due to their significant
distance. During steps 1 and 2, Rank-(1, 2) is predominant since P-1 (yellow) and P-2
(green) are in closer proximity with higher potential. However, in step 3, P-2 moves
away while P-1 continues to follow P-0 (blue) at a closer distance, which leads to a
higher rank for P-(0, 1). Fig. 4b illustrates a scene comprised of five individuals, as well
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as the potential ranking of three pairs. On the left-hand side, the actual paths of each
person are visually represented, while the right-hand side displays the corresponding
potential rankings. The shaded lines in both figures show the actual ranking. As P-0 and
P-3 move away from each other, the Rank-(0, 3) drops over time. On the other hand,
Rank-(2, 5) remains at the top as P-2 and P-5 approach one another. Rank-(3, 6) peaks
at step-4, when P-3 and P-6 stand at the closest point before parting ways. Ultimately,
our predictions align with the ground truths, demonstrating their accuracy.

6 Conclusion

This study introduces a framework that is model-agnostic and utilizes contrastive learn-
ing to ensure motion consistency and potential ranking for tracking interactions. Addi-
tionally, a novel metric has been developed to accurately quantify the interactive proper-
ness. The performance of our framework surpasses baselines by a significant margin,
and can be seamlessly integrated into existing prediction models to enhance their per-
formance. In future work, we aim to extend our methods to dense vehicle traffic sce-
narios where interactions between cars are constant, but less random due to the stricter
constraints of traffic rules. Ultimately, the proposed methods can be integrated into self-
driving technology as a crucial module for collision avoidance and path planning.
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