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Abstract. We focus on Stock Movement Forecasting (SMF) using
AI techniques to develop modern automated trading systems. Previous
studies with deep-learning-based methodology have only considered
binary up-or-down trends, ignoring the importance of fine-grained
categorization of the stock movements to facilitate decision-making.
However, the challenges of SMF arise from the randomness of the
global market impacting cross-sectional stocks and the volatility of
internal dynamics in each time series. To address these challenges,
we present a novel end-to-end learning-to-rank framework that incor-
porates both market-level and stock-level dynamics. Specifically, we
aim to identify cross-sectional stocks that exhibit notable movements
at every time step and learn to rank steps with the most significant
movements in the temporal dimension. We conduct extensive evalua-
tions of our multi-task learning framework utilizing real-world market
data, which demonstrate superior performance when compared to
state-of-the-art methods, with improvements in the Gain and Sharpe
Ratio by 5-15%.

1 Introduction

The prediction of market price movements is a crucial aspect of
Fin-tech AI research, and is accomplished through the use of data
mining [6, 15] and artificial intelligence techniques [21, 22].

Price movement forecasting applies to many financial assets such
as futures and options, carbon credits, commodities, and more. It can
benefit individual investors by helping them anticipate market risks,
and help policy makers to counter sudden spikes in consumer product
prices, thereby promoting overall social welfare. An emerging area
of interest within this field is the prediction of carbon credit prices,
specifically within the leading carbon trading markets such as the
European Union Emission Trading Scheme (EU ETS) [13]. This can
facilitate the achievement of a balance between economic growth and
reduced greenhouse gas emissions, thus promoting sustainability.

This study focuses on the most common task of Stock Movement
Forecasting (SMF), which can naturally extend to other financial
assets. Many recent studies have simplified SMF [4, 7, 19–21] as a
binary classification task that focuses solely on prominent rising and
falling steps, ignoring neutral movements. This was done to address
the issue of class imbalance, where tiny movements within ±0.1%
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Figure 1: Illustration of price movement quantile prediction with rising
case (top) and falling case (bottom). Our task is to categorize the
movement at each step to its correct quantile interval.

can account for up to 40% of per-minute trading scenarios. However,
this approach is impractical as neutral predictions play a key role in
realistic decision-making, and predicting only the binary up-or-down
movement is too coarse for a practical trading strategy. We show that
a finer-grained prediction is necessary to depict the distribution of
movements and make adaptive decisions, such as determining the
optimal trading quantities.

To this end, we focus on modeling SMF as a fine-grained Dis-
tributional Quantile Classification (DQC) task. Initially, we collect
statistical data on historical stock movement, which is then partitioned
into a series of finely divided quantile intervals to define the range
of movement distribution. As in Fig. 1, this allows us to forecast the
future movement distribution across the designated domain. The prob-
ability assigned to each quantile interval reflects the probability of the
corresponding movement range occurring. Furthermore, utilizing the
predicted fine-grained movements, we can carry out a realistic trading
gain assessment to measure the quality of the forecasts.

In this paper, we propose a unique learning-to-rank framework that
simultaneously explores the market-level dynamics and stock-level
volatility. For modeling the market-level dynamics, we search for
stocks with the most significant movements at each time step. For
modeling the stock-level volatility, we learn to rank steps with the
most significant movements in the temporal dimension. This learning-
to-rank formulation integrates seamlessly into the movement quantile
prediction as a multi-task learning objective. We evaluate our methods
with practical financial metrics on realistic datasets and show their
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superior performance to existing state-of-the-art methods.
We summarize our contributions in this study as follows.

1. We propose a price movement forecasting framework with ad-
vanced deep-learning based sequence prediction methodology.

2. We integrate market-level contextual features from market indices
and capture stock-level variations from individual stock patterns
with our differentiable learning-to-rank methodology.

3. We show that our model outperforms state-of-the-art approaches
by 5-15% by evaluating with practical financial metrics including
trading gain and Sharpe ratio.

4. Our framework could improve social welfare and improve AI
topics such as metric learning and recommendation systems.

2 Related Work
Stock Movement Forecasting (SMF) has received more attentions
from economics, financial data engineering and machine learning
communities. Recent studies [21, 22] of SMF focus on modeling
the temporal patterns from historical data for predicting the future
and formulate SMF as a regression task [1, 10, 21] or a classification
task [7,19,20]. We formulate SMF as a fine-grained classification task
with distributional estimation which is robust to imbalanced data.

Recent SMF studies adopt Deep-Learning (DL) models to per-
form feature and pattern learning from data, such as Auto-Regression
Neural Networks [16, 18] and Recurrent Neural Networks (RNNs
and LSTMs) [6, 7, 21]. The most recent Transformer [14] models
also show superior performance in SMF. Ding et al. [4] and Lim et
al. [10] improved Transformer attention with prior knowledge and in-
terpretability respectively. Lim et al. [10] and Yoo et al. [20] combined
Transformer with RNN structure to better encode past and future in-
puts. Our framework (Fig. 2) follows the state-of-the-art Transformer
encoder-decoder design. We also design a novel modality fusion mod-
ule to combine market global context into individual stock prediction
for better performance.

In this study, we employed a recent learning-to-rank (LTR) tech-
nique [3, 17] based on Optimal Transport technique [2] to efficiently
finding top elements of within a list of numbers. The pioneering work
RSR [8] proposed to learn relations of stocks with a pairwise order
loss. However, RSR couples the prediction of each stock with all other
stocks, which requires using data of the entire market to predict an
individual one. It is still unclear how to explore the rank of stocks to
improve forecasting accuracy efficiently. Our method can explicitly
predict the order of a dynamic stock list at any future step, improving
forecasting accuracy and gains.

3 Tasks and Approaches
We first review the stock movement forecasting (SMF) task and related
data and features. Then we demonstrate our learning framework and
multi-task objectives to fulfill the task.

We consider a market of N common stocks and M stock mar-
ket indices (e.g. S&P 500). We observe the past Th steps Th =
{1, 2, ..., Th} and predict the subsequent Tf future steps Tf =
{Th + 1, ..., Th + Tf} as the SMF task. Depending on the data
frequency, one step can be a day for daily trading data or a minute for
per-minute trading data.

3.1 Input data and processed time-series features

Numeric Features. The stock market makes publicly available vari-
ous price values (e.g., open, high, low, and close) and trading values

Table 1: Numerical inputs and features.

No. Features Formulation from raw data

1 v_close e.g., v_close = closet/closet-1 − 1
2 v_open/high/low e.g., v_open = opent/closet − 1

3 v_avg, k = 5, 10, ... e.g., v_avg =
∑k

i=1 closev-i+1/k

closet
− 1

4 v_trade/vol/amt e.g., v_vol = volt/volt−1 − 1
(e.g., trade number, volume, and amount) at each time step. We pro-
cess the numeric data as previous works [7, 20] as Table 1 shows.

First, the close price movement v_close is defined as the relative
change of close price between step t and t+ 1 such that v_close =
(closet/closet-1 − 1); Second, the open/high/low prices relative to
close price are similar. Third, the moving average of close price. Last,
the relative change of trade number, volume and amount.

Importantly, the close price movements v_close at future steps are
the prediction targets of SMF. Note that all numeric features depend
on real-time market changes thus are available only at historical steps,
but not future steps.

Categorical Features. We convert the following discrete and time-
related categorical inputs into numerical embeddings. The afternoon
and minute (if available) indicate AM-or-PM and the minute no. in
the 4-hour trading period per day, respectively. The date and weekday
denote the order of trading date in a year (0-365) and a week (0-4),
respectively. Note that these time-related inputs are available at both
historical and future steps as they are sequential.

Feature Fusion. At historical steps, we concatenate numeric inputs
and categorical embeddings, then project to a hidden feature of dimen-
sion dmodel as historical inputs Xh = [x1; . . . ;xTh ] ∈ R

Th×dmodel .
At future steps, we only project categorical embeddings to dmodel as
future inputsXf = [xTh+1; . . . ;xTh+Tf ] ∈ R

Tf×dmodel .

3.2 Division of movement intervals as classes

Table 2: Movement intervals and quantiles of CSI-21 dataset.

Class Cqt 0 1 2 3 4 5 6
Move ∆p (%) <-0.3 <-0.2 [-0.2,-0.1) [-0.1,0.1] >0.1 >0.2 >0.3
Percentage 10% 10% 10% 40% 10% 10% 10%
M-Quantile 0.05 0.15 0.25 0.5 0.75 0.85 0.95

In order to make precise predictions about forthcoming price
changes, we slice a collection of quantile intervals to serve as the
range of movement distribution.

Initially, we gather price movement statistics from the training
data and partition the range of movements into C = 7 intervals
to create a C-class space C = {0, 1, ..., 6}. Table 2 presents each
interval along with its corresponding empirical data percentage and
the approximate quantile of the median movement (M-Quantile) for
that specific interval.

Notably, the Class-3 stands for neutrality of small movements that
fall within the [−0.1%, 0.1%] range, which account for approximately
40% of historical movements. These small movements are flanked
by two distinct movement classes: Class 0-2 represent downward
movement intervals, while Class 4-6 encompass upward movement
intervals. Both downward and upward movement classes have roughly
the same distribution, with each accounting for approximately 10%
of total movements. At the two extremes of the movement spectrum,
Class-0 and Class-6 exhibit large movements of less than -0.3% and
greater than 0.3%, respectively, providing an effective method of
estimating sharp fluctuations.



Figure 2: Overview of DQC-Rank learning framework with Encoder,
Multi-Modality Fusion, Decoder and Rank Learning modules.

3.3 Model architecture

We show the designed DQC-Rank learning framework in Fig. 2. There
are four main components: (a) an input encoder, (b) a stock-index
modality fusion module, (c) an output decoder, and (d) a multi-task
learning-to-rank module.

Abbreviations. We abbreviate the common Transformer-based
attentions [14] to simplify notations.

• Mult-Head(Q,K,V ) denotes the multi-head attention which en-
codes input features with multiple dot-product attentions.

• Self-Attention(X) is a special multi-head attention in which the
query, key and value features are linearly projected from a same
featureX .

• Cross-Attention(X1,X2,X3) generalizes a multi-head attention
in which the query, key and value features are linearly projected
from different feature inputs. We will specify the inputs at usage.

Encoder. Given the historical featureXh ∈ RTh×dmodel , we design
a feature encoder to learn temporal patterns from each stock together
with each stock index simultaneously, as shown in Fig. 2(a). We utilize
the standard self-attention mechanism to attend to all historical steps
in bi-directions, encoding their temporal patterns from inputXh to
the hidden featureOSt of each stock, such that:

OSt ← Self-Attention(Xh) ∈ RTh×dmodel . (1)
Similarly, we apply self-attention to each stock index m and obtain

the featureOInd
m ∈ RTh×dmodel .

Multi-Modality Fusion (MMF). We aim to capture both the
market-level dynamics which affects each individual stock, as well
as the internal dynamics of each stock. Hereby, we design an adap-
tive MMF mechanism to embed market index information as global
market context into each individual stock representation, as follows.

We first combine all M indices as the market context as:
OInd ← Concat[OInd

1 ; ...;OInd
M ] ∈ RTh×(M×dmodel) . (2)

Then we use each stock feature OSt to query OInd with cross-
attention and apply a residual connection as follows:

OS-I ← OSt ⊕ Cross-Attention(OSt,OInd,OInd) , (3)
where ⊕ is an element-wise addition to fulfill residual connection.
Thus, the outputOS-I ∈ RTh×dmodel is the fused stock feature which
is both stock-specific and global context-aware in terms of the whole
market. The per-step outputs are shown in Fig. 2(b).

Decoder. In the next step, we combine the fused historical features
OS-I with observable future featuresXf (time-dependent categorical
features such as future date and step, details in Sec. 3.1) and decode
to the future representation.

Specifically, we first explore the future temporal pattern of Xf

by a standard self-attention such that Of ← Self-Attention(Xf ).
Then, we utilize theOf as the future query which attends to the fused
historical featureOS-I with cross-attention such that:

Hdec ← Cross-Attention(Of ,OS-I ,OS-I) . (4)
The output feature Hdec ∈ RTf×dmodel is the final hidden feature
which combines historical temporal patterns with future date informa-
tion. We summarize the above steps in Fig. 2(c).

3.4 Distributional Quantile Classification (DQC)

In this section, we describe our training objectives to fulfill the target
of estimating the distribution of the future stock movements to depict
the randomness of the market.

Let the classifier f produces a C-way logits over movement in-
tervals such that ψt ← f(Hdec(t)) ∈ RC for each future step t.
The Distributional Quantile Classification Loss is the weighted
cross-entropy loss of C-quantile classification averaged over all T
future steps such that:

Ldqc(ψ,z) =
1

T

T∑
t=1

− (1− pt)
γ︸ ︷︷ ︸

focal-term

· log pt︸ ︷︷ ︸
ce-loss

,

s.t. pt = σ(ψt[zt]) ,

(5)

in which σ is softmax function, zt is the true quantile interval as class
label at time t. The focal-term inherits from focal loss [11] to balance
class, which is critical as the movements are unevenly distributed as
Table 2 shows.

4 Inter- / Intra- Stock Rank Learning
We design a new approach to modeling market-level and stock-level
dynamics using a learning-to-rank method. Our methodology involves
two important steps.

The first step involves defining the inter-stock ranking, wherein we
identify the top rising and declining stocks across the entire market
to obtain market-level insights. The second step involves defining the
intra-stock ranking, wherein we identify the largest moving future
time steps for each individual stock to uncover its internal patterns at
the stock-level.

Notations. Suppose we have a list of N scalar numbers and a
predefined K with 0 < K ≪ N . With a binary class space B =
{0, 1}, we label the top-K smallest elements in the list as class 0,
while the rest N −K elements are in class 1. Let 1N be an all-ones
vector of dimension N .

4.1 Inter-Stock Rank Learning (Inter-Rank)

Figure 3: Demo of inter-stock ranking by finding the top-K (K = 2)
rising and falling stocks over all stocks at step t.

The objective of Inter-Rank is to identify the top-K stocks that
are rising or falling, within a pool of N cross-sectional stocks in



the market, in order to capture the market-level context that may
impact groups of time series. Fig. 3 illustrates the top rising and two
falling instances. To achieve this, we formulate a task that involves
distinguishing the top-K changing time-series from the remaining
(N −K) time-series.

Given the quantile logit prediction ψ̂ as in (5), we can estimate the
expected movement by g =

∑C
i=1 vi∗σ(ψ̂)[i], in which σ is softmax

operation, vi is median value of the discretized movement interval.
A large positive/negative g indicates rapid rising/falling trend. Let
G = {gi}Ni=1 be expected movements for all N stocks at the same
time step.

We choose a proper positive number η > 0 such that gi is roughly
within (−η, η), e.g., a stable choice is the range of the neutrality class.
Now we build two cost matrices Cr,Cf ∈ RN×2 for rising and
falling cases respectively such that:

Cr =


(g1 − η)2, (g1 + η)2

...
...

(gi − η)2, (gi + η)2

...
...

(gN − η)2, (gN + η)2

 , (6)

whileCf is built by swapping the two columns ofCr .
The first and second column of Cr indicates the difference of gi

to η and −η respectively. The following discussion will focus on the
task of finding the top-K (out of N ) rising stocks, which can extend
to the falling case symmetrically.

We formulate finding the top-K elements as an Optimal Transport
(OT) [12] task, which seeks to assign each stock to class 0 (if top-K)
or 1 (if non-top-K) with costs Cr . The minimal cost assignment
S ∈ RN×2 satisfies

S∗
r = argmin

S≥0
⟨S,Cr⟩ − λH(S)︸ ︷︷ ︸

entropy

,

s.t. S12 = 1N︸ ︷︷ ︸
Cond-1

, S⊤1N = [K,N −K]⊤︸ ︷︷ ︸
Cond-2

.
(7)

in which H(S) = −
∑

i,j Si,j logSi,j is an entropy term. The Cond-
1 ensures each row of S sums to 1 (each stock is either assigned
class 0 or 1), and Cond-2 ensures class 0 and 1 have K and N −
K elements respectively. The optimal solution (S∗

r )[i, ·] = (1, 0)
indicates the best assignment of each stock i to be top-K (class 0)
while (S∗

r )[i, ·] = (0, 1) indicates non-top-K (class 1).
Intuitively, a positive movement gi favors assignment of class-0

(top-K), as its cost (gi−η)2 (1st column ofCr) is less than (gi+η)2

(2nd column) which assigns it as class-1 ( non-top-K) with positive
η. Conversely, a negative gi favors assignment of class-1.

Lemma 1 The OT plan S∗
r of Problem (7) with entropy weight λ = 0

provides the exact top-K highest movement gi out of all N movements
G, indexed by

Ac
r = [Ac

1, . . . , A
c
i . . . , A

c
N ]⊤ = S∗

r · [0, 1]⊤

s.t. Ac
i =

{
0, if gi is a top-K element,
1, if gi is a non-top-K element,

(8)

in which Ac
i indicates the class of each stock i.

Lemma 1 shows that a special case of task (7) with λ = 0 can yield
optimal top-K selection, i.e., the solution S∗

r ∈ RN×2 indicates the
optimal assignment of each stock to be top-K (class 0) or not (class

1). Proof details are similar in [17]. However, solving Problem (7)
with λ = 0 is linear programming [12] with a high time complexity
of O(N3 logN) and is not differentiable.

Fortunately, we can solve the convex relaxation of Problem (7) with
λ > 0 in a reduced complexity of O(N2 logN). We adapt Sinkhorn
Algorithm [2] to solve Ŝ∗

r and the related Âc
r = Ŝ∗

r · [0, 1]⊤ in
an iterative and differentiable way. We can extend to finding top-K
falling stocks by replacingCr withCf in Problem (7) which yields
the solution Ŝ∗

f and Âc
f .

Once we have the estimated top-K rising and falling stock indicator
Âc

r and Âc
f , we can formulate a loss minimization procedure to

optimize the Inter-Stock rank learning during training stage as follows.
We first retrieve the true top-K rising and falling stock list to

build the ground-truth indicatorAc
r andAc

f respectively. We thus can
minimize the L2-distance between the estimated indicators against
the true indicators as:

ℓr(Ŝr, Ir) =
1

2N
||Âc

r,A
c
r||22 , top rising ;

ℓf (Ŝf , If ) =
1

2N
||Âc

f ,A
c
f ||22 , top falling .

(9)

With the chain rule on Eq.(6)-(8), the predicted ranking Âc
r and Âc

f

depend on movement predictions gi for each stock. Thus, minimizing
ℓr and ℓf help optimize the movement predictions towards their true
values which align with the correct ranking of top moving time series.

Finally, we average the inter-loss over all Tf future steps as the
complete Inter-Stock Ranking Loss as:

Linter =
1

2 · Tf

Tf∑
t=1

(ℓrt + ℓft ) . (10)

4.2 Intra-Stock Rank Learning (Intra-Rank)

Figure 4: Demo of intra-stock ranking by finding the top-K′(= 2)
rising and falling future steps of one stock.

In complementary to Inter-Rank, we further propose the Intra-Rank
which aims to explore the internal volatility of each time-series by
learning to identify its top-K′ rising and falling steps over all future
steps, as shown in Fig. 4.

Let G′ = {gTh+t}
Tf

t=1 be movement predictions of a stock over
future steps. With a similar choice of η as (6), we build the cost matrix
Dr ∈ RTf×2 for rising case such as:

Dr =


(gTh+1 − η)2, (gTh+1 + η)2

...
...

(gTh+t − η)2, (gTh+t + η)2

...
...

(gTh+Tf − η)2, (gTh+Tf + η)2

 , (11)

while the falling case cost matrix Df can be built by swapping the
two columns ofDr .



We formulate the task of finding the top-K′ rising (out of Tf ) future
steps as an Optimal Transport task which seeks to assign each step to
class 0 (top-K′) or 1 (non-top-K′) with costsDr . The minimal cost
assignment P ∈ RTf×2 satisfies

P ∗
r = argmin

P≥0
⟨P ,Dr⟩ − λH(P )︸ ︷︷ ︸

entropy

,

s.t. P12 = 1Tf , P
⊤1Tf =

[
K′, Tf −K′]⊤ .

(12)

The optimal solution (P ∗
r )[t, ·] = (1, 0) indicates the best assign-

ment of each step t to be top-K′ (class 0) while (P ∗
r )[t, ·] = (0, 1)

indicates non-top-K′.

Lemma 2 The optimal plan P ∗
r of Problem (12) with entropy weight

λ = 0 provides the exact top-K′ highest gTh+t out of G′, indexed by

Ec
r = [Ec

1, . . . , E
c
t . . . , E

c
T ]

⊤ = P ∗
r · [0, 1]⊤

s.t. Ec
t =

{
0, if gt is a top-K′ element,
1, if gt is a non-top-K′ element,

(13)

in which Ec
t indicate the class of each time step t.

Similar to discussions under Lemma 1, we formulate Problem (12)
with λ > 0 as its convex relaxation and estimate the optimal solution
P̂ ∗

r and its depending top-K′ rising step indicator Êc
r = Tf · P̂ ∗

r ·
[0, 1]⊤.

The above discussion can extend to finding top-K′ falling steps by
replacingDr withDf in Problem (12) which yields the solution P̂ ∗

f

and the top-K′ falling step indicator Êc
f .

In training, the true top-K′ rising and falling steps are taken as
the the ground-truth indicator Ec

r and Ec
f respectively. We minimize

the L2-distance from the estimated step indicator Êc
r and Êc

f to the
ground-truth indicator as:

Er(P̂r, I
′
r) =

1

2Tf
||Êc

r ,E
c
r ||22 , top rising ;

Ef (P̂f , I
′
f ) =

1

2Tf
||Êc

f ,E
c
f ||22 , top falling .

(14)

Finally, we average the intra loss for each of N stocks as the
complete Intra-Stock Ranking Loss as follows:

Lintra =
1

2 ·N

N∑
i=1

(Eri + Efi ) . (15)

4.3 Multi-task training objective

Finally, we can optimize the model by jointly minimizing the distri-
butional quantile loss Eq.(5), inter-rank loss (10), and intra-rank loss
(15) in end-to-end fashion as:

Lfinal = Ldqc + α1L
inter + α2L

intra , (16)

where factors α1, α2 are searched by cross-validation. We denote our
learning framework as DQC-Rank with multi-task learning objective
as in Eq. (16).

5 Experiment
We evaluate DQC-Rank on three benchmark datasets and compare
with various state-of-the-art methods.

5.1 Datasets

KDD-17 [21] has daily prices of 50 top performing US stocks from
10 sectors, which splits into training (2007-01 to 2015-07), validation
(2015-08 to 2015-09), and testing (2015-10 to 2015-12).

ACL-18 [19] contains daily prices of 88 US stocks with top capital
sizes, which splits into training (year 2007-2014), validation (year
2015), and testing (year 2016). For both datasets on US market, we
use S&P-500 (SPY) as the stock index. We take 5 days as history and
predict the closing prices at next 5 days.

CSI-21 (ours) is self-collected from 800 China A-shares from
2018-2021. The stock set consists of the first 300 and the next 500
top performing stocks in the market, corresponding to the CSI-300
and CSI-500 indices. We collect the per-minute stock prices at 240
trading steps in a 4-hour trading day. We take 5 minutes as history
and predict the closing prices at next 5 minutes.

To better evaluate our methods, we set three rolling-based dataset
splits on CSI-21 as follows. Each split includes a test set with stock
price (1) from 2021-04 to 2021-06 (downtrend market), (2) from
2021-01 to 2021-03 (fluctuating market), and (3) from 2020-10 to
2020-12 (uptrend market), respectively. For each split, all data ahead
of the test set is further divided for training and validation. We will
release this dataset and our splits.

5.2 Our Methods and Baselines

DQC-Plain is our proposed Quantile Classification framework with
proposed Encoder-MMF-Decoder design and optimizes with DQC
loss (Sec. 3.4). DQC-Rank further improves DQC-Plain by incorpo-
rating our proposed Rank learning framework in Sec. 4 which utilizes
inter- and intra-stock rank learning objectives to regularize the model.

We compare our methods with the following studies. Light-
GBM [9] is the gradient boosting tree with a multi-class learning ob-
jective to predict the movement quantiles of future steps. ALSTM [7]
uses LSTM model with temporal attention and adversarial training to
model price sequence. RSR [8] uses GNN and pairwise ranking to
explore stock relations. TFT [10] combines LSTM and Transformer
with a modified interpretable multi-head attention design. DTML [20]
couples all stocks by combining their features as global context. In
contrast, we perform inter-stock ranking to learn the market context
only in training stage. This makes our model robust to single stock
variation and much faster for single-stock inference.

5.3 Evaluation Metrics

Accuracy(↑). We evaluate the 7-way quantile classification accuracy
which denotes as QAcc. To evaluate the performance against class-
imbalance issue, we also report the average per-class quantile accuracy
denoted as PAcc.

MCC(↑) (Matthews Correlation Coefficient) is commonly used [7,
19] to evaluate binary classification (positive or negative), which
ranges from [−1, 1].

Gain(↑). We evaluate the trading gains based on the buy-hold-sell
strategy [5] and our fine-grained quantile predictions. We buy 2 stocks
with predicted class-5/6; buy 1 stock with class-4; hold with neutral
class-3, and short-sell 2 stocks with class-0/1 and 1 stock with class-2,
respectively. The Gain accumulates the one-step price change times
with current position at each future step.

MDD(↓). The Maximum DrawDown (MDD) metric calculates the
maximum gap of the return rates from peaks to consecutive troughs
within the test period. The lower MDD the better model is, as it
measures the risk level.



SR(↑). The Sharpe Ratio (SR) is a common metric in financial
study to measure the return rate adjusted with volatility such as SR =

Gain
σ(Gain) , in which σ is standard deviation. A higher SR indicates a
greater return relative to its risk taken, thus the better strategy.

5.4 Results and Analysis

Table 3: Average result on CSI-21 with three rolling splits.

Method \ Setting QAcc PAcc MCC MDD Gain SR
(%) ↑ (%) ↑ (%) ↑ (%) ↓ (%) ↑ ↑

LightGBM [9] 39.2 26.1 -9.05 3.39 2.63 0.16
ALSTM [7] 44.2 21.2 -8.34 2.20 8.07 0.88
TFT [10] 31.4 32.0 -2.38 3.82 14.8 1.09
DTML [20] 33.6 32.7 -1.76 3.79 12.7 1.10
RSR [8] 34.5 32.6 -6.71 2.98 12.9 1.07

DQC-Plain (ours) 35.2 34.1 -6.22 3.32 18.1 1.19
DQC-Rank (ours) 36.1 34.2 -4.94 3.05 21.4 1.26

Results of CSI-21. We show the results on CSI-21 in Table 3, which
collects per-minute high-frequency trading data in China market. We
summarize the results as follows.

• DQC-Rank outperforms other baselines in Gain and SR, leading
the second place DQC-Plain by 14.4% in Gain (21.4 vs. 18.7) and
5.9% in SR (1.26 vs. 1.19), at a cost of a larger MDD (retraction).

• The overall trends of the three splits are downward, oscillating and
upward, respectively. The Gain of each split is 7.8%, 23.4% and
33.0%, respectively, contributing to an averaged 21.4% in Gain
(last row, col. Gain in Table 3).

• Due to the strong class-imbalance issue, LightGBM and ALSTM
(shaded grey) had a seemingly high overal Acc (QAcc) (39.2% and
44.2%) while got extremely low in per-class (PAcc) (26.1% and
21.2%) and SR (0.16 and 0.88).

• We visualize the predictions in Fig. 5 and observe that DQC-Rank
better fits to the true movements than baselines.

Results of ACL-18 and KDD-17. We show results on KDD-17
and ACL-18 in Table 4 and observe the following trends.

Table 4: ACL-18 and KDD-17 results with daily trading data.

ACL-18 QAcc PAcc MCC MDD Gain SR
(%) ↑ (%) ↑ (%) ↑ (%) ↓ (%) ↑ ↑

LightGBM [9] 24.9 15.0 -41.4 1.96 -4.47 -0.10
ALSTM [7] 42.9 30.6 36.3 1.07 25.1 0.61
TFT [10] 41.0 39.2 37.8 1.17 37.2 1.74
DTML [20] 41.6 38.2 30.9 1.12 36.8 2.02
RSR [8] 41.1 39.7 37.8 1.11 35.9 2.21

DQC-Plain (ours) 41.3 39.7 36.8 1.18 38.9 1.82
DQC-Rank (ours) 46.4 42.4 39.0 1.09 39.8 2.33

KDD-17 QAcc PAcc MCC MDD Gain SR
(%) ↑ (%) ↑ (%) ↑ (%) ↓ (%) ↑ ↑

LightGBM [9] 34.5 17.3 -38.6 2.62 3.57 0.09
ALSTM [7] 42.1 14.3 3.15 1.80 5.94 0.18
TFT [10] 34.9 31.1 10.9 2.61 18.4 1.34
DTML [20] 34.8 29.8 12.6 2.48 17.6 1.31
RSR [8] 34.8 33.7 13.3 2.50 19.9 1.47

DQC-Plain (ours) 32.6 32.4 12.5 2.55 18.7 1.50
DQC-Rank (ours) 30.7 35.0 10.6 1.56 24.5 1.59

• On both datasets, DQC-Rank yields a highest Sharpe Ratio (SR)
with its better profit-to-volatility feature. E.g., on ACL-18 DQC-
Rank has a 5% increase of SR compared with best baseline RSR
(2.33 vs. 2.21); on KDD-17, DQC-Rank has a 8.2% better SR over
RSR (1.59 vs. 1.47) as well.

• DQC-Rank yields the best Gain, leading the RSR and DTML by
more than 5% relatively on ACL-18. DQC-Rank has a 28% higher
SR than DQC-Plain (2.33 v.s. 1.82), as its rank learning better
regularizes model training and reduces volatility. Similar trends are
also with KDD dataset.

• LightGBM yields the lowest Gains due to their lacked capacity of
performing complex temporal learning.

Figure 5: Visualization of distributional quantile prediction.

5.5 Ablation studies

Effects of Rank Learning (RKL). We study the individual contribu-
tion of Linter in Eq. (10) and Lintra in Eq. (15). On CSI-21 dataset,
DQC-Plain with Linter and Lintra individually achieves a relative
Gain boost of 3.2% and 5.5% resp., while they together (a.k.a., DQC-
Rank) achieve 9.6% boost. Lintra contributes more as it explores
the individual temporal pattern which matters more in the per-minute



interval. On the other, with the ACL-18 dataset of daily data, Linter

contributes slightly more (inter +3.6% v.s. intra +2.5%) as the inter-
market context is more informative in the daily scale. Overall, both
losses are critical and complementary.

Choice of K and K′. The hyper-parameter K in Inter-Rank learn-
ing controls number of stocks to consider with the largest movements
in each of up and down direction. To search for its optimal value,
we try (5,10,20,...,50)-percent of total N = 88 stocks of ACL-18
dataset, with resulting SRs as (0.72,1.19,1.23,0.86,0.77,0.89). Thus,
we default setting K = round(0.2 ·N) in our experiments. The hyper-
parameter K′ controls how many future steps we explore as most
significant moves per direction, which we set K′ = 1 out of the next
Tf = 5 steps to predict.

Transaction cost. We consider adding a 0.05% trading fee for each
traded stock. The Gain of CSI-21 of DQC-Rank dropped from 20.5%
to 6.1%, still outperforming the second place DQC-Plain 4.2% and
DTML 2.6%. The Gain of ACL-18 dropped from 39.8% to 36.4%,
outperforming the second place DQC-Plain 35.4% and TFT 33.7%.

6 Conclusion
We study stock movement forecasting as a fine-grained quantile clas-
sification task. We formulate learning-to-rank tasks to explore global
context of the market and internal moving patterns of an individ-
ual stock. Our model achieves significant improvement on realistic
datasets with various evaluation metrics.

In future work, we can apply our work to other financial assets
such as futures and options, carbon credits, commodities, and more.
Thus it can benefit individual investors by helping them anticipate
market risks and minimize losses, as well as policy makers who can
take early action based on the market prices of agricultural products
to promote social welfare. Furthermore, we can utilize our learning-
to-rank method to improve a broad range of critical AI topics, such as
metric learning and recommendation systems.
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