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Abstract—Despite the strong capabilities of large language
models in generative tasks, issues related to information unre-
liability and hallucinations pose significant challenges in high-
precision fields, such as drug analysis and recommendations in
the medical domain. In this work, we introduce the HFFN model,
a retrieval-augmented framework designed for medical document
retrieval tasks, which combines an embedding backbone with
a Hybrid Feature Fusion module to enhance retrieval quality.
HFFN improves model representation by learning to control the
weight parameters of nonlinear features, thereby avoiding the
instability associated with using the same activation function
across different datasets. Experimental results demonstrate that,
compared to a single-hidden-layer MLP, HFFN improves NDCG
score across various baseline embedding models by 2.3%-15.1%.

Index Terms—Retrieval-Augmented Generation, Multilayer
Perceptron, Medical Document Retrieval, Hybrid Feature Fusion
Network.

I. INTRODUCTION

Large Language Models (LLMs) [1], excel in text gener-
ation due to their vast parameters and complex structures.
Nevertheless, these models occasionally generate inaccurate
or entirely fabricated information, a phenomenon known as
“hallucination” [2]. In specific domains, this can result in
misinformation and severe consequences.

In domains like healthcare, law, and finance, where accuracy
and reliability are of utmost importance [3], the consequences
of incorrect information can be severe. For example, in the
medical field, inaccurate data could significantly impact patient
health [4]. If an LLM hallucinates during medical guidance,
fabricated information could be mistaken for a reliable treat-
ment plan, leading to incorrect diagnoses and treatments [5].

To address the “hallucination” issue in LLMs, Retrieval-
Augmented Generation (RAG) [6]has emerged. The proposal
of RAG ensures the reliability and accuracy of the generated
content by retrieving external knowledge to fill in gaps.

Previous studies, such as REMED [7], have shown that
fine-tuning embeddings by combining embedding models with
MLPs using a single activation function can improve per-
formance on medical datasets. However, a single activation
function is often insufficient for optimizing embeddings across
heterogeneous and complex data, as it may only work well for
certain data while remaining insensitive to others [8].

Our work proposes an adaptive approach to dynamically
optimize embeddings, improving model generalization and
robustness. The Hybrid Feature Fusion module replaces the
traditional MLP by using embedding features as weight co-
efficients to fuse two activation functions. Leveraging the
versatility of GELU [9] and SWIGLU [10], commonly used
in LLMs like PaLM [11], LLAMA2 [12], and BERT [13],
the module ensures robust adaptability across diverse datasets.
Refer to Figure 1 for details about the module.

We present the Hybrid Feature Fusion Network (HFFN),
which integrates a fixed embedding backbone with a trainable
fusion module. HFFN dynamically fuses activation outputs,
optimizing embeddings across datasets. By fine-tuning only
the fusion module and leveraging contrastive learning [14], it
adapts to real-time medical data while effectively distinguish-
ing between relevant and irrelevant documents.

Verified on two medical document datasets, we have demon-
strated that the HFFN model significantly exceeds the base-
lines which only use embedding backbones. Our model shows
an improvement of 38.2% on the Medical Menu dataset and
15.2%-16.2% on the Medical Paper dataset [7].

We summarize our contributions in this work as follows:

1) We propose a framework called HFFN in the medical
retrieval domain. The overall framework of the HFFN
model consists of a fixed embedding backbone and a
trainable hybrid feature fusion module, which collabo-
ratively optimize the text embedding representations.

2) Our proposed Hybrid Feature Fusion module demon-
strates strong performance on medical retrieval tasks.
We introduce the Hybrid Feature Fusion module, which
fuses different embedding representations through the
weight coefficients learned by the linear layer, fine-tunes
the embedding representation of medical text, effectively
optimizes the embedding space, and substantially en-
hances the accuracy of retrieving relevant documents.

II. RELATED WORK

A. Retrieval Augmented Generation

To address the issue of hallucination in large models,
previous approaches [15] [16] have employed chain-of-thought
(CoT) to enable self-reflection. However, CoT relies on the
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model’s strong reasoning abilities, which are often limited in
domain-specific models due to their relatively narrow knowl-
edge base. The proposal of Retrieval Augmented Generation
(RAG) [17] improves the accuracy and context understanding
capability through retrieving external information, making
it effective in generative tasks [18] [19] [20] on extensive
domains. And RAG’s dynamic retrieval [21] of external knowl-
edge [22] boosts accuracy and relevance of generated content.

B. Embedding Models

Embedding models generate dense vector representations to
capture semantic information [21], forming the foundation for
more efficient contextual feature representation. The Trans-
former architecture, with its self-attention mechanism [23],
ensures semantic coherence by enabling the model to process
all words in the sequence simultaneously. This innovation
paved the way for models like BERT [13], which employs a
bidirectional Transformer encoder and pre-training techniques
such as Masked Language Modeling (MLM) [24] and Next
Sentence Prediction (NSP) [25]. Due to their strong represen-
tational power, embedding models are crucial in tasks like text
retrieval in RAG, as demonstrated by embedding models such
as M3E [26] and ES5 [27] used in this work.

III. APPROACHES

In this section, we focus on introducing our HFFN model.
Particularly, we describe the embedding backbone, the loss
function and the Hybrid Feature Fusion module.

A. Embedding Backbone

To verify the effectiveness of our proposed method and
demonstrate its performance in medical retrieval tasks, we
selected several benchmark models: M3E [26] for Chinese
datasets, E5 [27] for English datasets and Contriever [28].

Previous studies have leveraged M3E and E5 as embedding
models for medical document retrieval tasks [7], demonstrating
their exceptional ability to capture correlation information
between medical queries and documents. These models are
trained using contrastive learning in self-supervision [29] to
optimize the embedding space. Unlike M3E and ES, which
are closed-source, Contriever is open-source, which makes it
easy to adjust the model architecture, optimize the training
method. Combined with the Hybrid Feature Fusion module,
it can effectively optimize medical document embeddings.
In particular, our HFFN model utilizes Contriever as the
embedding backbone, with M3E and ES5 serving as baselines.

B. Hybrid Feature Fusion module

As shown in Figure 1, the HFFN model includes two im-
portant components: a fixed pre-trained embedding backbone
and a trainable Hybrid Feature Fusion module. Specifically,
the Hybrid Feature Fusion module contains linear layers and
activation functions. For the activation functions, we use
GELU and SWIGLU described in Eq. 1 and Eq. 2.

GELU(z) = 2®(z) = « - % [1 +erf (\%)} 1)

SWIGLU(z) = 2 ® o(W,x + by) )

where x represents the input embedding, © denotes element-
wise multiplication. The W, indicates the gating weight ma-
trix, while the b, indicates the gating bias vector.

In the whole process of HFFN model, the query and docu-
ments need to be converted into high-dimensional embeddings
with semantic features through the embedding model, and
then the embeddings enter the Hybrid Feature Fusion module
for further feature extraction. Specifically, the embeddings
obtained by the embedding model in the previous step will
pass through a linear layer to extract the feature weight
coefficient «. It is worth noting that « is obtained by passing
the input features z through a linear layer, i.e., a = f(x),
where f(-) represents the linear transformation. The weight
coefficient plays a key role in improving the performance
of the entire model. It is similar to the GLN (gated linear
network) [30], which is used to control the load ratio of each
activation function and fuses the gain effect of each activation
function on the model. The HFFN’s workflow formula is
shown in Eq. 3. By optimizing the embedding space, relevant
documents are pushed closer to the query, while irrelevant
documents are pushed further.

HFFN(z) = w - GELU(z) + (1 — w) - SWIGLU(z)  (3)
where w denotes the softmax normalization of the «.

C. Loss Function

In this work, we employ contrastive learning to fine-tune
HFFN model, ensuring that queries are embedded closer to
relevant documents and further from irrelevant documents.
To effectively implement contrastive learning, we adopt the
InfoNCE Loss [31], a prevalent loss function in contrastive
learning. The equation for loss function is formulated as Eq. 4.

esim(q,dzr)

m sim(q,d; n sim(q,d; )
dimi€ (a L)+Z_j:1€ ’

L(W) = —log )

where sim(q,d) denotes the cosine similarity, d;” and d;
are the relevant and irrelevant documents of ¢ in the current
batch. The loss function L(W') aims to maximize the similarity
between ¢ and the relevant documents and to minimize the
similarity between ¢ and the irrelevant documents.

IV. EXPERIMENT
A. Datasets

To ensure comparability with previous work [7], we selected
two medical literature datasets: MMD (Medical Menu Dataset)
and MPD (Medical Paper Dataset). MMD, a Chinese drug
information dataset, has 573 training instances from 70 med-
ical queries and 205 test instances from 30 queries. MPD, an
English medical document dataset, consists of queries based
on paper titles (MPD-Title) and random passages (MPD-RP).
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Fig. 1: The structured details of HFFN model. HFFN contains an embedding backbone and trainable Hybrid Feature Fusion
module. Given a query and document, they are encoded into embeddings by the embedding backbone, followed by fine-tuning
through the Hybrid Feature Fusion module to optimize embedding representations. Please refer to Section III-B for details.

B. Baselines and our methods for comparison

We utilize three different embedding models as back-
bones: Contriever, M3E, and E5. For the ‘“base” method,
we use the pre-trained embedding model to encode both
the queries and documents, performing the retrieval task.
In the “FPFT” method, we fine-tune the embedding model
using the medical document dataset detailed in Section IV-A.
The "GELU/SWIGLU” method optimizes embeddings using
MLPs with different activation functions, fine-tuning the MLPs
to optimize the embedding space, as proposed in the previous
work REMED [7]. For the “HFFN” method, we employ the
Hybrid Feature Fusion module, as detailed in Section III-B.

C. Evaluation Metrics

To comprehensively measure the quality of retrieval, we use
diverse evaluation metrics, including Precision, Recall, mAP,
and NDCG@K. We set K to 10, recalling 10 documents.

D. Results and Analysis

TABLE I: Performance evaluation of different methods on
MMD (Top-K = 10).

Method Recall Precision mAP NDCG
M3E [26] 0.497 0.566 0.556 0.751
M3E-FPFT [7] 0.372 0.254 0.318 0.432
M3E-GELU [7] 0.531 0.514 0.569 0.724
M3E-SWIGLU [7] 0.575 0.493 0.493 0.702
Contriever [28] 0.475 0.437 0.426 0.749
Contriever-FPFT (Ours) 0.493 0.449 0.426 0.758
Contriever-GELU (Ours) 0.548 0.620 0.767 0.831
Contriever-SWIGLU (Ours)  0.602 0.780 0.909 0.906
Contriever-HFFN (Ours) 0.650 0.948 0.975 0.982

In Table I, we present the M3E performance of the MMD
using the above evaluation metrics, focusing on the Top-10
recall documents. The metrics as described in Section IV-C.
o Contriever-HFFN demonstrates superior performance

compared to Contriever-FPFT method. Compared to the

“FPFT” method, the HFFN model shows a significant
improvement, particularly in NDCG metric. As shown in
Table I, HFFN model outperforms “FPFT” by 22.4%.

o Our proposed model HFFN achieved the best performance
in all evaluation metrics. Contriever-HFFN outperforms
Contriever-SWIGLU by 4.8%, 16.8%, 8.6%, and 7.6% in
these metrics. These improvements highlight the effective-
ness of the Hybrid Feature Fusion module in optimizing text
embeddings, enhancing the model’s retrieval performance.

TABLE II: Performance evaluation of different methods on
MPD (Top-K = 10).

Dataset Method Recall Precision mAP NDCG
E5-base~2 [7] 0212 0526 0541 0.761

E5-GELU [7] 0340 0835 0890 0916

| ES-SWIGLU [7] 0295 0704 0763 0856
MPD-Title | ¢ ever 0236 0528 0521 0734
Contriever-GELU 0370 0995  0.999 099
Contriever-SWIGLU 0369 0.997  0.999  0.99
Contriever-HFFN 0.380 0.996 0.998 0.998

E5-base-v2 [7] 0229 0362 0600 0.779

E5-GELU [7] 0336 0829 0877 0910

E5-SWIGLU [7] 0328 0823 0864  0.895

MPD-RP | ) iever 0235 0538 0591  0.760
Contriever-GELU 0380 0961 0976  0.963
Contriever-SWIGLU 0384 0970 0962 0974
Contriever-HFFN 0388 0981 0999  0.982

In Table II, we present the performance results on the MPD
dataset. The “MPD-Title” refers to using queries based on the
paper titles, while “MPD-RP” means using queries based on
random paper passages, both of them are from MPD dataset.

e Our HFFN demonstrates enhanced performance on the
generated dataset based on title.
As shown in Table II, comparing the LLM-generated
“MPD-Title” dataset with the “MPD-RP” dataset, our
method shows a more significant improvement on the for-
mer. Titles, being more concise and information-dense than
full passages, enable the model to focus on critical content,
thereby mitigating the impact of redundant information.
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o Our method addresses the issue of activation functions
being sensitive to datasets. On both the “MPD-Title” and
“MPD-RP” dataset, the HFFN is more effective than the
“GELU/SWIGLU” method with fixed activation function.
Results show that Hybrid Feature Fusion module can adap-
tively integrate the effects of multiple activation functions.

E. Ablation

Effects of HFFN with different embedding backbones.
We investigate HFFN with different embedding backbones,
and summarize the evaluation results in Table III.

TABLE III: Ablation on M3E and ES5 (Top-K = 10).

Dataset Method Recall  Precision mAP NDCG
M3E-GELU [7] 0.531 0.514 0.569 0.724

MMD M3E-SWIGLU [7]  0.575 0.493 0.493 0.702
M3E-HFFN 0.586 0.502 0.548 0.780

E5-GELU [7] 0.340 0.835 0.890 0.916

MPD-Title E5-SWIGLU [7] 0.295 0.704 0.763 0.856
E5-HFFN 0.352 0.916 0.933 0.940

E5-GELU [7] 0.336 0.829 0.877 0.910

MPD-RP E5-SWIGLU [7] 0.328 0.823 0.864 0.895
E5-HFFN 0.340 0.857 0.905 0.933

Results demonstrate that the HFFN method is also effective
on other models. Our method improved the NDCG score by
5.6% and 2.3% on the two datasets, respectively.

Non-Dynamic feature hybrid fusion. We also evaluated
the effects of using an initialized trainable parameter method to
obtain the weight coefficient «v as described in Section III-B, as
opposed to obtaining it by linear transformation. Specifically,
we set the baselines where « is a trainable parameter, which
remains fixed after training. We mark these baselines as “Fix”
and compare their performances with that of our method.

TABLE IV: Ablation on fixed and dynamic weight coefficient
(Top-K = 10).

Dataset Method Recall  Precision mAP NDCG
MMD M3E-HFEN 0586 0502 0.548  0.780
M3E-Fix 0556 0480 0525  0.683

. ES-HFEN 0352 0916 0.933  0.940
MPD-Title E5-Fix 0345 0889 0917 0928
E5-HFEN _ 0.330  0.857 0905 0933

MPD-RP E5-Fix 0329  0.846 0881  0.921

Table IV shows that removing the step of obtaining the
weight coefficient by the linear transformation leads to a
decline in model performance to varying degrees. Specifically,
M3E’s performance in the NDCG dropped by 9.7%.

F. Data Scale Experiment

We explored the performance of our HFFN model with
different data amounts, specifically using 50% and 70% of
the MMD training data.

Table V shows that HFFN’s performance (such as mAP)
decreased by 8.8% and 6% in the 50% and 70% data case,
respectively. However, compared to the second-best SWIGLU
method, HFFN outperforms by 11.3% and 12.9%, demonstrat-
ing its effectiveness in low-resource scenarios.

TABLE V: Performance on different training data amounts.

Data Method mAP NDCG

100% | HFFN 0.975 0.982

0% | SWIGLU  0.786 (18.9% ) 0.916 (6.6% J.)
HFFN 0.915 (6% |) 0.971 (1.1% )

soq | SWIGLU 0774 (20.1% |)  0.894 (8.8% |)
HFFN 0.887 (8.8% |) 0.952 (3% |)

G. Case Study

To validate whether « indicates the suitability of the chosen
activation function for embeddings, we experimented on the
MPD dataset. The distribution of « is shown in Figure 2.
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Fig. 2: Distribution of o on the MPD dataset.

The figure above illustrates the distribution of a. To eluci-
date the pattern between o and texts, we examined texts for
various « and provided examples for large and small values.

“The evolution of PPC-primates emerged, and their basic
components have been retained in most or all extant primates.
This is not to say that an expanded and ...... ” (o = 0.89)

“Results and Discussion-Novel intermediate compounds in
TiO~ 2 ~-TiC system:(2)](#m2) ref-type="disp-formula”,
*fro [ ~* is an ionicity indicator of the band ......" (o = 0.06)

We observe that when the « is larger, i.e., the GELU
activation function is predominant, the model focuses more on
semantics, whereas when the « is smaller, i.e., the SWIGLU
activation function is predominant, the model pays more
attention to syntax.

V. CONCLUSION

We introduced HFFN, an efficient medical retrieval frame-
work. HFFN accelerates training and improves flexibility by
only fine-tuning the fusion module. In addition, our work has
certain limitations, it is currently only applicable to medical
retrieval tasks, and other tasks need to be proven in practice.
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