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Motivation

We focus on Stock Movement Forecasting (SMF).

Price movement forecasting applies to many financial assets such as futures and
options, carbon credits, commodities, and more.

An emerging area of interest within this field 1s the prediction of carbon credit
prices, specifically within the leading carbon trading markets such as the
European Union Emission Trading Scheme (EU ETS) and Chinese Emission
Allowance (CEA).

Previous deep-learning-based SMF techniques only considered binary up-or-down

classification tasks, ignoring the importance of fine-grained categorization.



Motivation Cont’d

Previous deep-learning-based SMF techniques only considered binary up-or-down
classification tasks, ignoring the importance of fine-grained categorization.

We present a novel end-to-end learning-to-rank framework that incorporates both
market-level and stock-level dynamics.

Our method learns to rank steps with the most significant movements in the
temporal dimension.

We conduct extensive evaluations over real-world market data and show 5-15%

improvements in the Gain and Sharpe Ratio.



Overview of our approach

* Many recent studies have simplified SMF as a binary classification task that focuses
solely on prominent rising and falling steps, ignoring neutral movements.

* However, the movement trends are highly imbalanced. E.g., tiny movements within
+0.1% can account for up to 40% of per-minute trading scenarios.

* A finer-grained prediction is necessary to depict the distribution of movements and
make adaptive decisions, such as determining the optimal trading quantities.

* We focus on modeling SMF as a fine-grained Dis- tributional Quantile

Classification (DQC) task.



Overview of our approach

* We focus on modeling SMF as fine-grained
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Figure 1: [llustration of price movement quantile prediction with rising
case (top) and falling case (bottom). Our task is to categorize the

 The probablhty assigned to each quantile movement at each step to its correct quantile interval.
interval reflects the probability of the

corresponding movement range occurring.



Definition of the task

We consider a market of N common stocks and M stock mar-
ket indices (e.g. S&P 500). We observe the past T}, steps Tn, =
{1,2,...,Tr} and predict the subsequent 7'; future steps 75y =
{Th, +1,...,Th + T} as the SMF task. Depending on the data

frequency, one step can be a day for daily trading data or a minute for
per-minute trading data.



Task features

Table 1: Numerical inputs and features.

No. | Features Formulation from raw data

1 |v _close e.g., v_close = closet/closet-l —1
2 |v_open/high/low |e.g., v_open = open:/close: — 1

k .
3 |v_avg, k=5,10,...|e.g.,v_avg = Zi:lzgzz::-m/k —1

4 |v_trade/vol/amt |e.g., v_vol = vol;/vol;_1 — 1
(e.g., trade number, volume, and amount) at each time step. We pro-
cess the numeric data as previous works [7,20] as Table lshows.




Division of movement intervals as classes

We partition the range of movements into C = 7 intervals. Table
2 presents each interval along with its corresponding empirical
data percentage and the approximate quantile of the median

movement (M-Quantile) for that specific interval.

Table 2: Movement intervals and quantiles of CSI-21 dataset.

Class C?" 0 1 2 3 4 | 5| 6
Move Ap (%) |<-0.3|<-0.2{[-0.2,-0.1) [[-0.1,0.1]{>0.1 |>0.2{>0.3
Percentage 10% | 10% 10% 40% |10%|10% |10%
M-Quantile 0.05 | 0.15 0.25 0.5 0.75]0.85{0.95




Model Architecture
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Figure 2: Overview of DQC-Rank learning framework with Encoder,

H%° « Cross- Attention( Of, 0°! : 0°! ) Multi-Modality Fusion, Decoder and Rank Learning modules.



Distributional Quantile Classification (DQC)

Let the classifier f produces a C'-way logits over movement in-
tervals such that @, « f(H%(t)) € R for each future step ¢.
The Distributional Quantile Classification Loss i1s the weighted
cross-entropy loss of C-quantile classification averaged over all T’
future steps such that:

T
1
LM, 2) = — E —(1—p:)" - logps ,

focal-term ce-loss

S)

sit. pr = o(Pe[z])
in which o is softmax function, z; is the true quantile interval as class
label at time t. The focal-term inherits from focal loss [11] to balance

class, which is critical as the movements are unevenly distributed as
Table 2 shows.



Inter- / Intra- Stock Rank Learning

 We first define the inter-stock ranking, wherein we
iIdentify the top rising and declining stocks across the
entire market to obtain market-level insights.

« Then we define the intra-stock ranking, wherein we
identify the largest moving future time steps for each
Individual stock to uncover its internal patterns at the
stock-level.



Inter-Stock Rank Learning (Inter-Rank)
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Figure 3: Demo of inter-stock ranking by finding the top-K (K = 2)
rising and falling stocks over all stocks at step .
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Intra-Stock Rank Learning (Intra-Rank)
We further propose .the Intra—Ran'k. which \. )D\ f\/
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Figure 4: Demo of intra-stock ranking by finding the top-K'(= 2)
rising and falling future steps of one stock.

We average the intra loss for each of N
stocks as the Intra-Stock Ranking Loss as

N
L = iy D +ED



Multi-task training objective

* Finally, we can optimize the model by jointly minimizing the distri- butional quantile

loss Eq.(5), inter-rank loss (10), and intra-rank loss (15) in end-to-end fashion as:

Finally, we can optimize the model by jointly minimizing the distri-
butional quantile loss Eq.(5), inter-rank loss (10), and intra-rank loss
(15) in end-to-end fashion as:

Lfinal — quc + alLintefr 4+ a2LintTa, , (16)

where factors a1, ag are searched by cross-validation. We denote our
learning framework as DQC-Rank with multi-task learning objective
as in Eq. (16).



Experiments

 We evaluate DQC-Rank on 3 benchmark datasets described as follows.

* KDD-17 [Zhang et al., KDD 2017] has daily prices of 50 top performing US stocks from
10 sectors. ACL-18 [Xu et al., ACL 2018] contains daily prices of 88 US stocks with top
capital sizes. We take 5 days as history and predict the closing prices at next 5 days.

e (CSI-21 (ours) is self-collected from 800 China A-shares from 2018-2021. We collect the
per-minute stock prices at 240 trading steps in a 4-hour trading day. We take 5 minutes as

history and predict the closing prices at next 5 minutes.



Baselines

* DQC-Plain is our proposed Quantile Classification framework with proposed Encoder-
MMEF-Decoder design and optimizes with DQC loss.

* DQC-Rank further improves DQC-Plain by incorporating our proposed Inter- / Intra- Rank
learning framework.

* We compare our methods with LightGBM, ALSTM (Feng et al., IICAI 2019), RSR (Feng
et al., TOIS 2019), TFT (Lim et al., IJF 2021), and DTML [20] (Yoo et al., SIGKDDD
2021).



CSI-21 Results

e DQC-Rank outperforms other baselines in Gain and SR, leading
the second place DQC-Plain by 14.4% in Gain (21.4 vs. 18.7) and
5.9% in SR (1.26 vs. 1.19), at a cost of a larger MDD (retraction).

e The overall trends of the three splits are downward, oscillating and
upward, respectively. The Gain of each split is 7.8%, 23.4% and
33.0%, respectively, contributing to an averaged 21.4% in Gain
(last row, col. Gain in Table 3).

e Due to the strong class-imbalance issue, LightGBM and ALSTM
(shaded grey) had a seemingly high overal Acc (QAcc) (39.2% and
44.2%) while got extremely low in per-class (PAcc) (26.1% and
21.2%) and SR (0.16 and 0.88).

Table 3: Average result on CSI-21 with three rolling splits.

Method \ Setting

QAcc PAcc MCC MDD Gain SR
()T ()t (Pt ()] ()T 7

LightGBM [9]

ALSTM [7]

TFT [10] 314 320 -238 382 148 1.09
DTML [20] 33.6 327 -1.76 379 12.7 1.10
RSR [8] 345 326 -671 298 129 1.07
DQC-Plain (ours) | 35.2 34.1 -6.22 332 18.1 1.19
DQC-Rank (ours) | 36.1 342 -494 3.05 214 1.26

Results of CSI-21. We show the results on CSI-21 in Table 3, which
collects per-minute high-frequency trading data in China market. We

summarize the results as follows.



KDD-17 and ACL-18

e On both datasets, DOQC-Rank yields a highest Sharpe Ratio (SR)
with its better profit-to-volatility feature. E.g., on ACL-18 DQC-
Rank has a 5% increase of SR compared with best baseline RSR
(2.33 vs. 2.21); on KDD-17, DQC-Rank has a 8.2% better SR over
RSR (1.59 vs. 1.47) as well.

e DQC-Rank yields the best Gain, leading the RSR and DTML by
more than 5% relatively on ACL-18. DQC-Rank has a 28% higher
SR than DQC-Plain (2.33 v.s. 1.82), as its rank learning better
regularizes model training and reduces volatility. Similar trends are
also with KDD dataset.

e LightGBM yields the lowest Gains due to their lacked capacity of
performing complex temporal learning.



i2.51

12.04

15

104

0.5 4

10.04

144

142 4

140 4

138 4

136 4

134 4

—— DQC-Plain
—— DQC-Rank

T T T T T
1] 50 100 150 200

—— real-price
— TFT

— DTML
— RSR

—— DQC-Plain
—— DQC-Rank

524

5.0 4

4.8 4

.6 4

Visualizations

— real-price
— TFT

—— DTML
— RSR

— DOC-Plain
— DOC-Rank

.45 4

A0

354

30

— neal-price
— TFT

— oML
— RsR

— Dac-Plain

100

200

100

150

200

92 fn —— real-price
/ \ — TFT
51 /’ —— DTML
— RSR
9.0 — DOC-Plain
— DQC-Rank
8.9
8.8
8.7
8.6
8.5 1
0 50 100 150 200
55 4 — real-price
\\/'\. — TFT
\ — DML
.50 \ RSR
h \. — DQC-Plain
.45 i
.40
3%
.30
.25
.20

200




Conclusion

We study stock movement forecasting as a fine-grained quantile
classification task, with designed learning-to-rank tasks to explore global
context of the market and internal moving patterns of an individual stock.

Our model achieves significant improvement on realistic datasets with
various evaluation metrics.

In future work, we can apply our work to other financial assets such as
futures and options, carbon credits, commodities, and more.

This study can potentially benefit individual investors by helping them
anticipate market risks and minimize losses, as well as policy makers who
can take early action based on the market prices of agricultural products to
promote social welfare.



®

. ®
‘ THANKS “

- o

>



