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Abstract—Retrieval-Augmented Generation (RAG) has
emerged as a crucial technique to enhance the accuracy and
reliability of large language models, particularly in specialized
domains like medicine. However, the effectiveness of RAG
heavily depends on the quality of text embeddings used for
retrieval. In this paper, we introduce Med-MoE-Embed, a
novel approach to improve medical text embeddings tasks.
Med-MoE-Embed leverages a pretrained embedding backbone
augmented with a trainable Mixture of Experts (MoE) network,
allowing for efficient adaptation to specific medical subdomains
and tasks. We design each expert to be a compact KANs or a
MLP with heterogeneous activation functions such as GELU
and SWIGLU. Furthermore, we propose a two-step fine-tuning
process that optimizes expert training and selection, enhancing
the model’s adaptability across various medical datasets. Our
extensive evaluation focuses on RAG tasks in the medical
domain, demonstrating significant improvements in retrieval
accuracy and generation quality. Med-MoE-Embed mitigates
the challenges of limited data accessibility and domain-specific
requirements in the medical field, offering a versatile and
efficient solution for enhancing embedding quality in medical
natural language processing applications.

Keywords: Text Embedding Model, Mixture of Experts,
Retrieval-Augmented Generation, Medical Document Retrieval

I. INTRODUCTION

The rapid development of large language models (LLMs),

such as GPT-4 [26] and Deepseek-V2 [3], has significantly

advanced natural language processing (NLP) capabilities, en-

abling impressive performance in tasks like question answer-

ing, text generation, and summarization. However, LLMs have

limitations, particularly their tendency to generate plausible-

sounding but factually incorrect information, a phenomenon

commonly referred to as "hallucination" [11].

To mitigate this issue, Retrieval-Augmented Generation

(RAG) [8], [18] techniques have been introduced. RAG

leverages external knowledge sources to provide LLMs with

relevant information during the inference process, thereby

enhancing both accuracy and reliability. Nevertheless, the

effectiveness of RAG is highly dependent on the relevance and

quality of the retrieved information. In the medical domain,

where knowledge is complex and constantly evolving, RAG

* Corresponding Author.

has been widely adopted for its potential to keep models up-to-

date. Nevertheless, the retrieval of inaccurate information can

lead to harmful decisions, posing serious risks to patients and

healthcare professionals. Therefore, we focus on improving the

accuracy of RAG systems specifically in the medical domain

to mitigate these risks and enhance the reliability of medical

decision-making.

A key component in improving the retrieval process is the

development of effective text embedding models. These mod-

els transform textual information into dense vector representa-

tions, which are crucial for accurately retrieving and ranking

relevant documents. High-quality text embeddings ensure that

more relevant information is accessed and utilized, thereby

significantly enhancing the performance of RAG systems.

In the medical domain, text embedding models are used

for tasks such as question-answering [2], [34], literature re-

trieval [33], [34], EHR analysis [7], [19], and clinical decision-

making [2], [10]. These models improve information retrieval

and data analysis, aiding in interpreting studies, supporting

decisions, and enhancing patient care.

Our research aims to develop a text embedding model tai-

lored for medical applications, improving the retrieval process

in RAG systems to enhance the accuracy and reliability of

language model outputs in medical settings.

The medical field consists of diverse subdomains, each with

specific terminologies and data requirements. This diversity

challenges general embedding models, which often struggle

to capture the nuanced embeddings needed for specialized

tasks. Additionally, strict privacy regulations restrict access

to medical datasets, making it difficult to train a universal

embedding model that serves all subdomains effectively.

To address these challenges, we propose a novel method

called Med-MoE-Embed. Specifically, our method introduces

a trainable MoE network module comprising multiple shared

experts, multiple routed experts, and a gating network. Dur-

ing inference, shared experts are always activated, while

the routed experts are selectively activated by the gating

network. This design optimizes computational efficiency and

enables targeted adaptation to specific tasks or datasets. The

modularity of Med-MoE-Embed ensures that it can be fine-

tuned on particular datasets or specialized tasks, providing

tailored embeddings that align closely with domain-specific re-

quirements.Additionally, the modularity of Med-MoE-Embed

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 B

io
in

fo
rm

at
ic

s a
nd

 B
io

m
ed

ic
in

e 
(B

IB
M

) |
 9

79
-8

-3
50

3-
86

22
-6

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

BI
BM

62
32

5.
20

24
.1

08
22

37
4

Authorized licensed use limited to: South China Normal University. Downloaded on February 10,2025 at 12:37:22 UTC from IEEE Xplore.  Restrictions apply. 



2239

allows for easy integration with existing embedding back-

bones, enhancing task-specific performance without requiring

full parameter fine-tuning. This adaptability makes Med-MoE-

Embed a highly effective solution for addressing the chal-

lenges posed by the diverse and specialized nature of medical

data.

We summarize our contributions in this study as follows.

1) We propose a trainable MoE module called Med-MoE-

Embed to enhance the capabilities of pretrained embed-

ding backbones on private datasets and specific tasks.

2) We designed several compact MLP and KANs models as

shared experts and routed experts to enable efficient task

specialization and enhanced adaptability.

3) We propose a two-step fine-tuning method that ensures

the experts within Med-MoE-Embed are fully trained and

optimally selected.

4) We extensively evaluated the performance of Med-MoE-

Embed in RAG tasks, demonstrating its effectiveness in

this crucial application area within the medical domain.

II. RELATED WORK

A. Retrieval Augmented Generation

Retrieval Augmented Generation (RAG) [18] is a method

that merges retrieval and generation models to create more

informed text outputs. Unlike generative models like GPT-

4 [26], which depend on internal knowledge, RAG accesses

external knowledge bases for up-to-date or specialized infor-

mation. The process involves using a retrieval model to find

relevant documents, which are then inputted into a generative

model to produce detailed answers. This approach has been

successfully applied in various NLP tasks, including question

answering systems [21], [32] and text generation tasks [37],

demonstrating improved accuracy and relevance compared to

generative models alone. RAG’s adaptability allows it to be

tailored to different domains and tasks, by altering the retrieval

database, making it a versatile tool in the field of NLP.

B. Text Embedding Models

Text embedding models have seen significant advance-

ments, with foundational models like BERT [4] and Sentence-

BERT [29] demonstrating substantial improvements in tasks

such as semantic similarity and clustering. Other notable

contributions include Sentence T5 [24], which produces high-

quality, general-purpose embeddings. Despite these advance-

ments, embedding models often struggle to generalize across

different tasks and domains. This limitation has prompted the

development of unified models and benchmarks, such as the

Massive Text Embedding Benchmark (MTEB) [23], which

evaluates models on novel tasks and domains.

Recent efforts have focused on leveraging large, diverse

datasets, such as the LLM-generated FRet dataset [16]. State-

of-the-art models are typically fine-tuned on supervised data

to enhance performance on downstream tasks. Notably, NV-

Embed [15], which uses only publicly available data, has

achieved a record-high score of 69.32, securing the top po-

sition on the MTEB benchmark.

C. Mixture-of-Experts

Mixture of Experts (MoE) models are widely used for their

ability to scale model capacity efficiently. Initially proposed

by Jacobs et al. [9] and refined by Jordan et al. [14], MoE

models use a gating mechanism to route inputs to different

experts, enhancing specialization while reducing interference.

In the domain of natural language processing, Shazeer et

al. [31] incorporated an MoE layer into LSTM architectures,

achieving strong results in NLP tasks like language modeling

and machine translation. GShard [17] improved multilingual

translation using sparse gating and automatic sharding.

Recent models like GLaM [5] have scaled MoE models

to trillion parameters while optimizing training and inference

costs. DeepSeek-V2 [3] further advances MoE by segmenting

experts for greater specialization and isolating shared experts

to reduce redundancy. Building on DeepSeek-V2, we propose

the Med-MoE-Embed module, utilizing shared experts for

comprehensive knowledge and routed experts for specific data.

III. APPROACH

In this section, we focus on introducing our proposed

approach. We illustrate the overview of Med-MoE-Embed

in Figure 1. Specifically, we first process the medical text

through the Embedding backbone to generate intermediate

embeddings. Med-MoE-Embed then refines these embeddings,

producing more accurate representations that can be tailored

to specific datasets and specialized tasks. As a result, down-

stream applications benefit from these enhanced embeddings,

including literature retrieval, EHRs analysis, decision-making

support, question-answering systems, and medical education

and so on.

A. Shared MoE

In conventional MoE models, experts often learn redundant

knowledge, causing parameter inefficiency. We address this by

using shared experts to capture comprehensive knowledge, as-

signed deterministically to embeddings. In our proposed MoE,

the shared experts are responsible for learning more general

knowledge and are pretrained on comprehensive datasets. The

routed experts focus on learning more specialized domain-

specific knowledge. By combining the comprehensive abilities

of the shared experts with the specialized expertise of the

routed experts, we enhance the capability of our MoE model.

Let v be the output of the embedding model. We compute

the output h of the MoE layer as follows:

h =

Ns∑
i=1

E
(s)
i (v) + α

Nr∑
i=1

giE
(r)
i (v) , (1)

where Ns and Nr denote the numbers of shared experts and

routed experts, respectively; E
(s)
i (·) and E

(r)
i (·) denote the i-th

shared expert and the i-th routed expert, respectively; and α
is a trainable parameter updated during training.

The gate value gi for the i-th routed expert is defined as:

gi =

{
si, si ∈ Topk({sj | 1 ≤ j ≤ Nr},Kr),

0, otherwise,
(2)
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Fig. 1: The Overview of Med-MoE-Embed. Med-MoE-Embed enhances the embedding backbone’s adaptability to sensitive

medical data and improves its representational capabilities across various downstream tasks through the training of a MoE

network module.

where Kr denotes the number of activated routed experts.

The token-to-expert affinity score si is computed as si =
Softmaxi

(
vT ei

)
, where ei is the centroid of the i-th routed

expert in this layer. The function Topk(·,K) denotes the set

containing the K highest scores among the affinity scores

calculated for the embedding output v and all routed experts.

B. The design of expert architecture in MoE

We use a compact MLP that expands an input from h
dimensions to 4h dimensions via a linear transformation, fol-

lowed by a non-linear activation to capture complex patterns.

The features are then projected back to h dimensions through

another linear transformation. Based on this structure, we

designed four distinct network architectures as our experts.

MLP-SWIGLU SwiGLU is a variant of the Gated Linear

Unit where the gating mechanism employs the Swish activa-

tion function instead of the traditional sigmoid function. This

variant is designed to provide more flexibility and adaptivity

in gating the flow of information within neural networks.

The SwiGLU function is defined as SwiGLUβ(x,W, V, β) =
Swishβ(xW ) · (xV ), where Swish(x) = x · σ(x). In this

formulation, x represents the input to the SwiGLU function,

while W and V are learnable weight matrices that allow the

unit to adapt during training. σ(x) is the sigmoid function.

In our model, we adopt the MLP-SwiGLU as a MoE expert,

following recent advancements in LLMs.

MLP-GELU GELU (Gaussian Error Linear Unit) is an

activation function that is often used to enhance the expressive-

ness of neural networks by smoothly blending the properties

of linear and non-linear activation. We use GELU as the

activation function of MLP as an expert. The GELU function

is defined as GELU(x) = xΦ(x) = x · 1
2

[
1 + erf

(
x√
2

)]
.

KAN Kolmogorov–Arnold Networks (KANs) [22] offer

an innovative alternative to traditional MLPs by leveraging

the Kolmogorov-Arnold representation theorem. Unlike MLPs,

which use fixed activation functions at each node, KANs

feature learnable activation functions applied along the edges.

This approach replaces the linear weight parameters typically

used in MLPs with univariate functions that are parameterized

as splines.

We set a compact KANs as one of our MoE routed experts.

Specifically, the KANs structure we designed is similar to the

previous MLP. It takes an input with h hidden dimensions,

projects it to a 4h-dimensional space, and then projects it back

to the original h-dimensional space.

MLP-KAN The core feature of KANs lies in their place-

ment of learnable activation functions on the edges of the

network (i.e., the weights), rather than on the nodes. Therefore,

we replace the activation function in the MLP with a KAN

layer that has the same input and output dimensions, serving

as one of the experts.

For simplicity, we employ a MoE with a shared expert and

four routed experts in the experiments. The shared expert is

an MLP-SWIGLU model, while the routed experts consist of

MLP-SWIGLU, MLP-GELU, KAN, and MLP-KAN models.

However, the actual number of shared and routed experts can

vary depending on the specific requirements.

C. Loss Function

In this paper, we employ contrastive learning to fine-tune

Med-MoE-embed, ensuring that queries are embedded closer

to positively related documents and further from negatively

related documents within the embedding space. To realize

the objectives of contrastive learning, we adopt the InfoNCE

Loss [25], a prevalent loss function in contrastive learning. We

adapt this loss function to suit the specific requirements of our

task, resulting in the formulation of a tailored loss function.

The equations for this loss function are presented as Eq. 3.
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L(W ) = − log
esim(q,d+

i )∑m
i=1 e

sim(q,d+
i ) +

∑n
j=1 e

sim(q,d−j )
, (3)

where sim(q, d) denotes the cosine similarity, d+i and d−j are

the positive and negative samples of q in the current batch.

D. Training Methodology

In our MoE framework, since experts are inherently dif-

ferent, we set the load balancing loss to a smaller value.

This prevents the model from overusing specific experts while

ensuring tasks are appropriately assigned to the most suitable

experts, enhancing training efficiency.

Our method involves a two-step training approach. First,

we pretrain shared experts independently and load them into

the MoE. In the initial phase, the gating network randomly

distributes input data to different experts, ensuring that each

expert is adequately trained early on. In the second phase,

normal training resumes, with the gating network learning to

assign tasks to the most suitable experts until convergence. We

find this method helps maintain a balanced training process.

IV. EXPERIMENT

Our evaluation focuses on the performance of Med-MoE-

Embed in RAG tasks as a representative and challenging appli-

cation in medical natural language processing. We demonstrate

its effectiveness across various downstream tasks that rely on

high-quality embeddings in the medical domain.

A. Datasets

The MPD dataset [28] has 1,000 curated papers from

NCBI, resulting in 886 retained papers and 79,966 entries,

split into MPD-Title and MPD-RP. The MMD dataset [28]

includes over 200,000 drug records from "WHO Medicine"

and "National Pharmacopoeia," with relevance assessments for

100 medical questions, divided into 573 training and 205 test

instances. PubMedQA [12] features 1,000 expert-annotated

QA instances and 211,300 generated instances from PubMed

abstracts. MedMCQA [27] has over 194,000 multiple-choice

questions from India’s AIIMS and NEET PG exams, covering

more than 2,400 healthcare topics across 21 specialties.

We created the MCQA-Retri dataset from MedMCQA to

assess retrieval capabilities. We extracted medical questions

and labeled their answer explanations as positive examples.

For negative examples, we classified questions by subject and

used the BM25 [30] retrieval algorithm to rank answer ex-

planations, selecting those ranked 6th to 10th. After removing

overly short explanations, the final dataset contains 182,822

training samples and 4,183 test samples, each with a question,

one positive example, and five negative examples.

B. Embedding Backbones

We utilize five different embedding models as back-

bones: GTE-base-en-v1.5, GTE-base-zh, M3E, E5-base-v2

and PubMedBert-base-embedding, all of which output 768-

dimensional embeddings.

GTE models [20] are based on the BERT framework and

support both Chinese and English. M3E [36] is a robust model

trained using the UniEM framework. It has been extensively

evaluated on the MTEB-zh benchmark and trained on over

22 million Chinese sentence pairs. E5 [35] is a universal

text embedding model known for its adaptability across re-

trieval, clustering, and classification tasks. PubMedBert-base-

embedding [6] is an embedding model based on the PubMed-

BERT model trained on medical datasets.

C. Baselines and Settings

For the "base" method, we directly use the pre-trained

embedding model to encode both the query and document,

performing the retrieval task via Faiss [13]. In the "FPFT" (Full

Parameter Fine-Tuning) method, we fine-tune the embedding

model on datasets. The "GELU/SWIGLU" method involves

processing the output of the embedding model through our

proposed MLP with different activation functions to obtain an

optimized embedding representation, followed by fine-tuning

the MLP. In the experimental section, we refer to our method,

"Med-MoE-Embed", as MME for simplicity.

D. Evaluation Metrics

We use various evaluation metrics, including Precision,
Recall, F1 Score, mAP, and Accuracy. Precision measures

the proportion of relevant documents among the retrieved ones,

while Recall calculates the proportion of relevant documents

that are successfully retrieved. The F1 Score provides a

harmonic mean of these two metrics, giving equal weight

to both precision and recall. Additionally, we use mAP to

evaluate the ranking quality, and Accuracy to measure the

overall correctness of the retrieved results.

E. Results and Analysis

TABLE I: Performance evaluation of different methods on

MPD (Top-K = 10).

Recall Precision F1 Score mAP Accuracy

MPD-Title

E5-base-v2 [28] 0.212 0.526 0.302 0.541 0.545
E5-GELU 0.340 0.835 0.483 0.890 0.651
E5-SWIGLU 0.295 0.704 0.416 0.763 0.611
E5-MME-Title 0.346 0.915 0.502 0.917 0.680
GTE-en-base 0.210 0.514 0.298 0.566 0.542
GTE-en-GELU 0.315 0.828 0.456 0.840 0.645
GTE-en-SWIGLU 0.330 0.866 0.478 0.899 0.662
GTE-MME-Title 0.363 0.978 0.529 0.984 0.703

MPD-RP

E5-base-v2 0.229 0.562 0.325 0.600 0.566
E5-GELU 0.336 0.829 0.478 0.877 0.647
E5-SWIGLU 0.328 0.823 0.469 0.864 0.664
E5-MME-RP 0.352 0.869 0.501 0.902 0.676
GTE-en-base 0.227 0.555 0.322 0.581 0.565
GTE-en-GELU 0.319 0.785 0.454 0.787 0.653
GTE-en-SWIGLU 0.338 0.830 0.480 0.828 0.667
GTE-MME-RP 0.367 0.922 0.525 0.921 0.686

In Table I, we present the performance of E5-base-v2

and GTE-base-en-v1.5 on the MMD datasets using several
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evaluation metrics, focusing on the Top-10 retrieval results.

The metrics include Recall, Precision, F1 Score, mAP and

Accuracy as described in Section IV-D. From the table, we

can draw the following conclusions:

Our method significantly enhances the retrieval capa-
bility of text embedding models. As shown in the table,

our approach achieves approximately a 2 to 5.1% increase in

F1 Score, a 2.7% to 9.3% improvement in mAP, and a 2.9%

to 4.1% increase in Accuracy. These results demonstrate the

robustness of our method across various evaluation metrics.

GTE-MME performs best on all evaluation metrics.
From the table, we can see that GTE-MME demonstrates the

best performance across all metrics. Compared to E5-MME,

GTE-MME exhibits superior results, likely due to GTE’s

robust performance capabilities established during pretrain-

ing. Given that the embedding backbone in our method can

be easily replaced, our approach offers great flexibility and

adaptability, further illustrating its broad applicability.

TABLE II: Performance evaluation of different methods on

MMD (Top-K = 10).

Setting Recall Precision F1 Score mAP Accuracy

M3E 0.379 0.592 0.462 0.551 0.568
M3E-FPFT 0.372 0.254 0.302 0.318 0.231
M3E-GELU 0.531 0.514 0.522 0.569 0.617
M3E-SWIGLU 0.575 0.493 0.531 0.493 0.612
M3E-MME 0.477 0.640 0.547 0.645 0.638

GTE-zh-base 0.398 0.644 0.492 0.582 0.614
GTE-zh-GELU 0.423 0.648 0.512 0.588 0.617
GTE-zh-SWIGLU 0.467 0.647 0.542 0.592 0.615
GTE-zh-MME 0.502 0.668 0.573 0.653 0.628

In Table II, We show the performance of different settings

of M3E and GTE-base-zh on the MMD dataset using several

evaluation metrics, focusing on the Top-10 retrieval results.

MME method has a significant improvement effect on
both M3E and GTE-zh models. As illustrated in Table II,

our approach outperforms the second-best method, yielding

enhancements in F1 Score ranging from 1.6% to 3.1%, mAP

from 6.1% to 7.6%, and accuracy from 1.1% to 2.1%. Fur-

thermore, our model attains the highest F1 Score, mAP, and

Accuracy among all compared methods.

Table III shows the performance of different settings of E5

and GTE on the MCQA-Retri dataset using several evaluation

metrics. From the table, we can see that the MME method

also shows good performance in various metrics.

TABLE III: Performance evaluation(%) of different models on

MCQA-Retri dataset (Top-K = 10)

Setting Recall Precision F1 Score mAP Accuracy

E5-base 91.98 50.33 65.06 88.24 84.43

E5-MME 92.10 59.66 72.41 90.95 84.58
GTE-base 91.03 60.58 72.75 90.31 84.45

GTE-MME 93.54 66.69 77.87 91.10 86.53
PubMedBert 92.66 63.06 75.05 95.12 86.47

PubMedBert-MME 95.30 78.56 86.12 97.35 91.91

The MME method demonstrates enhanced performance
on the MCQA-Retri dataset generated based on Medical
QA dataset. As shown in Table III, models utilizing the MME

approach achieved notable gains in F1 score, mean Average

Precision (mAP), and accuracy. Specifically, the MME method

led to an enhancement of approximately 5% to 11% in F1

score and a 1% to 2% increase in mAP. These improvements

highlight the effectiveness of MME in enhancing the model’s

ability to understand and process complex medical questions,

ultimately leading to more accurate and reliable results.
We extend our experimentation with the MME module to

the MedMCQA dataset. In this study, we leverage explana-

tions from the training set of MedMCQA and text from the

PubMedQA dataset as the corpus. Before the large language

model generates an answer, we first retrieve the most relevant

text from the corpus as a one-shot prompt to help the large

language model better answer the question. The results are

shown in Table IV.

TABLE IV: Accuracy (%) of LLMs on the MedMCQA

Dataset using different models

Corpus MedMCQA PubMedQA

Setting/LLM Llama3 Deepseek-V2 Llama3 Deepseek-V2

Zero-shot 49.87 53.64 49.87 53.64

E5-base 51.28 61.77 50.25 60.02

E5-MME 52.57 62.73 52.11 60.46
GTE-base 51.20 61.53 49.57 60.55

GTE-MME 54.77 66.29 53.58 62.26
PubMedBert 57.96 68.35 50.15 61.72

PubMedBert-MME 57.87 69.72 52.96 63.79

Our method can improve the quality of retrieved text,
which can better enhance the reasoning accuracy of large
language models. As shown in the Table IV, we used the

training sets of MedMCQA and PubMedQA as the corpus

to retrieve relevant texts. We tested the performance on the

MedMCQA test set using two language models, Llama3-8B-

Instruct [1] and DeepSeek-V2 [3]. The results indicate that the

MME method improved retrieval-augmented generation.
Corpus relevance and model capability significantly

impact the accuracy of question-answering systems. Using

MedMCQA as the corpus results in substantial accuracy im-

provements, highlighting the advantages of a domain-specific

dataset. In contrast, the PubMedQA dataset yields smaller

gains, with some models showing slight performance de-

creases. Notably, Deepseek-V2 maintains stable performance

on PubMedQA, likely due to its prior knowledge, which

enhances answer accuracy.

F. Ablation

TABLE V: Perfomance of MME with multiple datasets

Setting Recall Precision F1 Score mAP Accuracy

E5-MME-Title 0.346 0.915 0.502 0.917 0.680
E5-MME-RP 0.352 0.869 0.501 0.902 0.676
E5-MME(Title) 0.315 0.830 0.457 0.850 0.641
E5-MME(RP) 0.336 0.836 0.479 0.840 0.660

GTE-MME-Title 0.363 0.978 0.529 0.984 0.703
GTE-MME-RP 0.359 0.905 0.514 0.917 0.686
GTE-MME(Title) 0.343 0.936 0.502 0.950 0.678
GTE-MME(RP) 0.354 0.905 0.509 0.889 0.683

Multiple datasets We also evaluated the performance of our

MoE method across multiple datasets. In Table V, E5-MME

Authorized licensed use limited to: South China Normal University. Downloaded on February 10,2025 at 12:37:22 UTC from IEEE Xplore.  Restrictions apply. 



2243

and GTE-MME represent models that were jointly trained on

the MPD-RP and MPD-Title datasets, while E5-MME-RP and

E5-MME-Title indicate models trained individually on each

of these datasets. In the table, we can observe that using the

MME method enables the model to perform well across all

datasets, achieving a balanced state between the two datasets.

TABLE VI: Performance evaluation of different Top-k Value

Top-k Recall Precision F1 Score mAP Accuracy

10 0.367 0.922 0.525 0.921 0.686

15 0.494 0.915 0.642 0.917 0.729

20 0.601 0.877 0.713 0.912 0.772
30 0.755 0.706 0.730 0.897 0.701

Effect of different Top-k. We investigate the effect of vary-

ing Top-k values on different evaluation metrics on Table VI.

This experiment was conducted on the MPD-RP dataset using

the GTE-MME-RP setting. As the Top-k value increases from

10 to 30, Recall improves steadily, while Precision decreases.

The F1 Score increases, and mAP slightly declines. Accuracy

first rises, peaking at 77.2% for k=20, but drops to 70.1% at

k=30. This indicates a trade-off between recall and precision as

Top-k increases, with overall performance remaining balanced

across different values.

V. CONCLUSIONS

We introduce an efficient medical document retrieval mod-

ule Med-MoE-Embed comprised of a fixed pre-trained em-

bedding model and a trainable MoE network. This enables

pretrained embedding models to quickly adapt to private data

and specific downstream tasks. The gating network is trained

to select the most suitable expert for each task. We evaluate

the performance of the Med-MoE-Embed module in RAG

tasks, demonstrating its effectiveness. Future work can explore

using larger embedding backbones and developing deeper,

more sophisticated MoE networks, to achieve better results.
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